refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 117 results
Sort by

Filters

Technology

Platform

accession-icon SRP066818
Activation of the IGF1 pathway mediates changes in cellular contractility and motility in single-suture craniosynostosis
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We examined the effect pg IGF1 actibation on cellular contractility and migration in SSC osteoblast cells. Based on microarray levels of IGF1 expression, we selected fifteen cases and nine controls spanning from the highest IGF1 expression to the lowest in cases and controls. Subsequently, the pattern of IGF1 expressions in these cells was assessed using high throughput RNA sequencing. Overall design: RNA-seq based gene expression profiling of fifteen SSC osteoblasts and nine control osteoblasts.

Publication Title

Activation of the IGF1 pathway mediates changes in cellular contractility and motility in single-suture craniosynostosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66463
Differentially expression profiling in a brain metastasis of a papillary thyroid carcinoma and its technical replicate vs. non-brain metastatic papillary thyroid carcinomas, and primary brain tumors
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Experiment: Establishment of expression profiles in a brain metastasis from a PTC (RNA processing and hybridization to Affymetrix microarray done twice to yield a technical replicate), in non-brain metastatic, stage III and IV PTCs, and primary brain tumors. Biostatistics analysis identified genes and biofunctions related to the brain metastatic PTC.

Publication Title

Microarray expression profiling identifies genes, including cytokines, and biofunctions, as diapedesis, associated with a brain metastasis from a papillary thyroid carcinoma.

Sample Metadata Fields

Sex, Disease stage

View Samples
accession-icon GSE138198
Differentially expression profiling in Hashimoto's thyroiditis (HT), papillary thyroid carcinoma (PTC) with HT in background, PTC without HT in background, micro PTC (mPTC), and three normal thyroid samples (TN).
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Experiment: Establishment of expression profiles in HT, PTC with HT, PTC without HT, and mPTC in comparison to TN samples. TN samples were downloaded as CEL files from the repository of the microarray vendor. Biostatistical analysis focussed in first instance on identifying genes and biofunctions related to HT and PTC with HT.

Publication Title

Genetic relationship between Hashimoto`s thyroiditis and papillary thyroid carcinoma with coexisting Hashimoto`s thyroiditis.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE23878
Genome Wide Expression Analysis of Middle Eastern Colorectal Cancer Reveals FOXM1 as a Novel Target for Cancer Therapy
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to identify potential genes that may play an important role in progression of colorectal carcinoma, we screened and validated the global gene expression using cDNA expression array on 36 CRC tissues and compared with 24 non-cancerous colorectal tissue.

Publication Title

Genome-wide expression analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel target for cancer therapy.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE11416
Comparison of osteosarcoma cell lines and normal human osteoblasts
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconAgilent-014693 Human Genome CGH Microarray 244A (Feature number version), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11414
Gene expression of osteosarcoma cell (U2OS, MG63) lines relative to normal human osteoblasts (HOB)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Gain or loss of genes and deregulation of gene expression can result in cumulative and progressive disruptions of normal cellular functions.

Publication Title

In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE100534
Expression profiling in breast cancer brain metastases compared to breast cancers and primary brain tumors
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Experiment: Expression profiling in breast cancer brain metastases (BC) compared to breast cancers (BC) and primary brain tumors (prBT). The objectives are to identify expression profiles that are specific to BCBM in order to identify new molecular biomarkers. The characterization of the BCBM samples included adjacent genetic techniques.

Publication Title

Comprehensive molecular biomarker identification in breast cancer brain metastases.

Sample Metadata Fields

Sex, Specimen part, Disease stage

View Samples
accession-icon SRP114515
Novel Form of JARID2 is Required to Regulate Differentiation in Keratinocytes.
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Polycomb repressive complex-2 (PRC2) is a group of proteins that play important role during development and in cell differentiation. PRC2 is a histone-modifying complex that catalyses methylation of lysine 27 of histone H3 (H3K27me3) at differentiation genes leading to their transcriptional repression. JARID2 is a co-factor of PRC2 and is important for targeting PRC2 to chromatin as well as modulating its activity. Here, we show that in many human cells, including human epidermal keratinocytes, JARID2 predominantly exists as a novel low molecular weight form, which lacks the N-terminal PRC2-interacting domain (?N-JARID2). We show that ?N-JARID2 is a cleaved product of full-length JARID2 spanning the C-terminal conserved region consisting of jumonji domains. JARID2 knockout in keratinocytes results in up-regulation of cell cycle genes and repression of many epidermal differentiation genes. Surprisingly, repression of epidermal differentiation genes in JARID2-null keratinocytes can be relieved by expression of ?N-JARID2 suggesting that this form promotes activation of these genes and has opposing function to that of PRC2 in regulation of differentiation. We propose that a switch from expression of full-length JARID2 to ?N-JARID2 is important for the up-regulation of genes during differentiation. Overall design: RNA-seq analysis of Wildtype and JARID2-null keratinocytes (HaCaTs) on day 0 and day 3 of calcium induced differentiation.

Publication Title

A novel form of JARID2 is required for differentiation in lineage-committed cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE7454
Modulation of gene expression by decitabine in U-2OS cells in vitro and in vivo
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background: Epigenetic modifications such as methylation silencing of genes with CpG-island-associated promoters is frequently observed in cancer. Studies regarding the implications of epigenetic modifications in osteosarcoma (OS) have been limited. The epigenetic drug decitabine is a potential re-activator of silenced genes through de-methylation, and is currently undergoing clinical trials for cancer treatment. No study to date has utilized decitabine to modify gene expression in OS-derived cells to identify gene-specific methylation targets that may have therapeutic importance. The objective of this study was to measure the response of the OS cell line, U-2OS, to decitabine treatment both in vitro and in vivo.

Publication Title

Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: identification of apoptotic genes as targets for demethylation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP018933
Small RNA profiling of human cumulus cells and oocytes
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Cumulus cells are biologically distinct from other follicular cells and perform specialized roles, transmitting signals within the ovary and supporting oocyte maturation during follicular development. The bi-directional communication between the oocyte and the surrounding cumulus cells is crucial for the acquisition of oocyte competence. Using Illumina/deep-sequencing technology, we dissected the small RNAome of pooled human mature MII oocytes and cumulus cells. Overall design: Cumulus cells and MII mature oocytes small RNA profiles were generated by deep-sequencing, using Illumina 1G sequencer

Publication Title

MicroRNAs: new candidates for the regulation of the human cumulus-oocyte complex.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact