refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1395 results
Sort by

Filters

Technology

Platform

accession-icon GSE7441
Transcriptional profile of primary astrocytes expressing ALS-linked mutant SOD1.
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons. Mutations in the Cu/Zn superoxide dismutase (SOD1) are found in about 20% of patients with familial ALS. Mutant SOD1 causes motor neuron death through an acquired toxic property. Although, molecular mechanism underlying this toxic gain-of-function remains unknown, evidence support the role of mutant SOD1 expression in non-neuronal cells in shaping motor neuron degeneration. We have previously found that in contrast to non-transgenic, SOD1G93A-expressing astrocytes induced apoptosis of co-cultured motor neurons. This prompted us to investigate whether the effect on motor neuron survival was related to a change in the gene expression profile. Through high-density oligonucletide microarrays we found changes in the expression of genes involved in transcription, signaling, cell proliferation, extracellular matrix construction, response to stress and steroid and lipid metabolism. Decorin, a small multifunctional proteoglycan, was the most up-regulated gene. Down-regulated genes included the insulin-like growth factor-1 receptor and the RNA binding protein ROD1. We also analyzed the expression of selected genes in purified motor neurons expressing SOD1G93A and in spinal cord of asymptomatic and early symptomatic ALS-rodent model.

Publication Title

Transcriptional profile of primary astrocytes expressing ALS-linked mutant SOD1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE147197
Expression data from patients that has received grass pollen sublingual immunotherapy treatment for two years.
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Prevalence and severity of allergic diseases have increased worldwide. To date, respiratory allergy phenotypes are not fully characterized and, in addition, the mechanisms underlying sublingual immunotherapy (SLIT) are still unknown.

Publication Title

Exploring novel systemic biomarker approaches in grass-pollen sublingual immunotherapy using omics.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE59219
Intrinsic self-DNA triggers inflammatory disease dependent on STING
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Intrinsic self-DNA triggers inflammatory disease dependent on STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59217
Intrinsic self-DNA triggers inflammatory disease dependent on STING (I)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Inflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies.

Publication Title

Intrinsic self-DNA triggers inflammatory disease dependent on STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51199
Cyclic-Di-Nucleotides Trigger ULK1 (ATG1) Phosphorylation of STING to Prevent Sustained Innate Immune Signaling
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Activation of the STING (Stimulator of Interferon Genes) pathway by microbial or self-DNA, as well as cyclic di nucleotides (CDN), results in the induction of numerous genes that suppress pathogen replication and facilitate adaptive immunity. However, sustained gene transcription is rigidly prevented to avoid lethal STING-dependent pro-inflammatory disease by mechanisms that remain unknown. We demonstrate here that after autophagy-dependent STING delivery of TBK1 (TANK-binding kinase 1) to endosomal/lysosomal compartments and activation of transcription factors IRF3 (interferon regulatory factors 3) and NF-B (nuclear factor kappa beta), that STING is subsequently phosphorylated by serine/threonine UNC-51-like kinase (ULK1/ATG1) and IRF3 function is suppressed. ULK1 activation occurred following disassociation from its repressor adenine monophosphate activated protein kinase (AMPK), and was elicited by CDNS generated by the cGAMP synthase, cGAS. Thus, while CDNs may initially facilitate STING function, they subsequently trigger negative-feedback control of STING activity, thus preventing the persistent transcription of innate immune genes.

Publication Title

Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE59218
Intrinsic self-DNA triggers inflammatory disease dependent on STING (II)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Inflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies.

Publication Title

Intrinsic self-DNA triggers inflammatory disease dependent on STING.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107811
STING-Dependent Signaling Manifests IL-10 Controlled Inflammatory Colitis
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107810
Gene expression in the colon from IL10 KO mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

That commensal bacteria can influence intestinal inflammation has been observed using other models of chronic colitis. Loss of IL-10, a major immunosuppressive cytokine, induces spontaneous colitis in mice. The incidence of spontaneous polyp formation in IL-10-deficient mice was also completely eliminated in the absence of STING

Publication Title

STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107809
Gene expression in murine embryonic fibroblasts stimulated with DNA or LPS
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

MyD88 may play a direct role in STING-dependent signaling, or alternatively that STING-dependent pro-inflammatory cytokines may require downstream MyD88-dependent signaling to exert their effect.

Publication Title

STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2248
Human Mesenchymal stem cell
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparisons of expression profils of human undiferentiated ES cells and Mesenchymal ES cells

Publication Title

Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact