refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 1451 results
Sort by

Filters

Technology

Platform

accession-icon GSE50042
Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

We used transcription-profiling to identify mitogen-activated protein kinase (Mapk) signaling as an important regulator involved in the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes. We show in tissue culture that activation of Mapk signaling by elevation of intracellular levels of cAMP using administration of either dibutyryl-cAMP or inhibitors of the cAMP-hydrolyzing enzyme phosphodiesterase-4 (Pde4) enhances OPC differentiation. Finally, we demonstrate that systemic delivery of a Pde4 inhibitor leads to enhanced differentiation of OPCs within focal areas of toxin-induced demyelination and a consequent acceleration of remyelination.

Publication Title

Retinoid X receptor gamma signaling accelerates CNS remyelination.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79914
Rapid and efficient generation of myelinating oligodendrocytes from human induced pluripotent stem cells using a combination of three transcription factors
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79912
Rapid and efficient generation of myelinating oligodendrocytes from human induced pluripotent stem cells using a combination of three transcription factors [hiPSC]
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in hiPSC-derived neural progenitor cells (hiPSC-NPC) is sufficient to rapidly generate O4+ oligodendrocytes with an efficiency of 60 to 70% within 28 days.

Publication Title

Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP014484
Differences in CTCF binding site sequence are associated with unique regulatory and functional trends during embryonic stem cell differentiation [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

CTCF (CCCTC-binding factor) is a highly conserved 11-zinc finger DNA binding protein with tens of thousands of binding sites genome-wide. CTCF acts as a multifunctional regulator of transcription, having been previously associated with activator, repressor, and insulator activity. These diverse regulatory functions are crucial for preimplantation development and are implicated in the regulation of numerous lineage-specific genes. Despite playing a critical role in developmental gene regulation, the mechanisms that underlie developmental changes in CTCF recruitment and function are poorly understood. Our previous work suggested that differences in CTCF’s binding site sequence may affect the regulation of CTCF recruitment, as well as CTCF’s regulatory function. To investigate these two possibilities directly during a developmental process, changes in genome-wide CTCF binding and gene expression were characterized during in vitro differentiation of mouse embryonic stem cells. CTCF binding sites were initially separated into three classes (named LowOc, MedOc, and HighOc) based on similarity to the consensus motif. The LowOc class, with lower-similarity to the consensus motif, is more likely to show changes in binding during differentiation. These more dynamically bound sites are enriched for motifs that confer a lower in vitro affinity for CTCF, suggesting a mechanism where sites with low-binding affinity are more amenable to developmental control. Additionally, by comparing changes in CTCF binding with changes in gene expression during differentiation, we show that LowOc and HighOc sites are associated with distinct regulatory functions. In sum, these results suggest that the regulatory control of CTCF’s binding and function is dependent in part upon specific motifs within its DNA binding site. Overall design: Mouse E14 ES cells were differentiated in vitro for 4.5 days using retinoic acid. RNA-Seq was performed from cells collected before and after differentiation.

Publication Title

CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP174621
Integrative analysis identifies lincRNAs up- and downstream of neuroblastoma driver genes (PHOX2B)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Long intergenic non-coding RNAs (lincRNAs) are emerging as integral components of signaling pathways in various cancer types. In neuroblastoma, only a handful of lincRNAs are known as upstream regulators or downstream effectors of oncogenes. Here, we exploit RNA sequencing data of primary neuroblastoma tumors, neuroblast precursor cells, neuroblastoma cell lines and various cellular perturbation model systems to define the neuroblastoma lincRNome and map lincRNAs up- and downstream of neuroblastoma driver genes MYCN, ALK and PHOX2B. Each of these driver genes controls the expression of a particular subset of lincRNAs, several of which are associated with poor survival and are differentially expressed in neuroblastoma tumors compared to neuroblasts. By integrating RNA sequencing data from both primary tumor tissue and cancer cell lines, we demonstrate that several of these lincRNAs are expressed in stromal cells. Deconvolution of primary tumor gene expression data revealed a strong association between stromal cell composition and driver gene status, resulting in differential expression of these lincRNAs. We also explored lincRNAs that putatively act upstream of neuroblastoma driver genes, either as presumed modulators of driver gene activity, or as modulators of effectors regulating driver gene expression. This analysis revealed strong associations between the neuroblastoma lincRNAs MIAT and MEG3 and MYCN and PHOX2B activity or expression. Together, our results provide a comprehensive catalogue of the neuroblastoma lincRNome, highlighting lincRNAs up- and downstream of key neuroblastoma driver genes. This catalogue forms a solid basis for further functional validation of candidate neuroblastoma lincRNAs. Overall design: CLB-GA was transduced with control or inducible shPHOX2B. The cells were treated with doxycycline for 5 days.

Publication Title

Integrative analysis identifies lincRNAs up- and downstream of neuroblastoma driver genes.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP186406
A temporal proteogenomic atlas of HCV-host interactions unravels cell circuits driving viral and metabolic liver disease.
  • organism-icon Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Background and aims: Hepatitis C virus (HCV) infection is a major cause of liver disease including steatosis, fibrosis and liver cancer. Viral cure cannot fully eliminate the risk of disease progression and hepatocellular carcinoma (HCC) in advanced liver disease. The mechanisms for establishment of infection, liver disease progression and hepatocarcinogenesis are only partially understood. To address these questions, we probed the functional proteogenomic architecture of HCV infection within a hepatocyte-model. Methods: Time-resolved HCV infection of hepatocyte-like cells was analyzed by RNA sequencing, proteomics, metabolomics, and leveraged by integrative genomic analyses. Using differential expression, gene set enrichment analyses, and protein-protein interaction mapping we identified pathways relevant for liver disease pathogenesis that we validated in livers of 216 cirrhotic patients with HCV. Results: We uncovered marked changes in the protein expression of gene sets involved in innate immunity, metabolism and hepatocarcinogenesis. In infected cells, HCV enhances glucose metabolism and creates a Warburg-like shift of the lactate flux. HCV infection impaired the formation of peroxisomes -organelles required for long-chain fatty acid oxidation- causing intracellular fatty acid accumulation, which is a hallmark of non-alcoholic fatty liver disease (NAFLD). Ex vivo studies confirmed perturbed peroxisomes and revealed an association of hepatic catalase expression with clinical outcomes and phenotypes in HCV-associated cirrhosis, NAFLD and HCC cohorts. Conclusion: Our integrative analyses uncover how HCV perturbs the hepatocyte cell circuits to drive chronic liver disease and hepatocarcinogenesis. This proteogenomic atlas of HCV infection provides a model for the discovery of novel drivers for viral- and non-viral induced liver disease. Overall design: mRNA profiles of either mock or HCV-infected Huh7.5.1dif cells, performed in triplicates and collected every day between days 0 and 10 post infection. HCV infection reached plateau at day 7 post infection (pi). After day 7 pi unspecific effects cannot be excluded.

Publication Title

Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated With Disease Development.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE9314
Expression data from mouse lung with recombinant human soluble PBEFtreatment and ventilator-induced lung injury
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have previously demonstrated that pre-B-cell colony enhancing factor (PBEF) ais a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility118. In the current study, we explored the mechanistic participation of PBEF in ALI and ventilator-induced associated lung injury (VIALI). Initial in vitro studies and demonstrated rhPBEF aas a direct rat neutrophil chemotactic factor in vitro producing marked in vivo increases in BAL leukocytes (PMNs) in vivo following (intratracheal injection (,IT) in C57B6 mice. These latter changes were accompanied by increased BAL levels of the PMN chemoattractants (, KC and MIP2), and modest changes in lung vascular and but were not associated with significant increasesin alveolar permeability. We next explored the potential synergism between rhPBEF administration (IT) and a mechanical ventilation model of modest VILI lung injury (4 hours, 30 ml/kg tidal volume). We and observed dramatic synergistic increases in BAL PMNs, and both BAL protein and cytokine levels (IL-6, TNF-?, KC). Gene expression profiling Microarray analysis further supported a major role for PBEF in the induction of gene modules associated with ALI and VALI (NFkB pathway, leukocyte extravasation, apoptosis, toll receptor signaling). Finally, we exposed wild type and heterozygous PBEF+/- mice (targeted deletion of a single PBEF allele deletion) to a model of severe VILImechanical ventilation-induced lung injury (4 hours, 40 ml/kg tidal volume). PBEF+/- mice were significantly protected from VIALI-associated increases in BAL protein and BAL IL-6 levels and exhibited significantly reduced expression of ALI-associated gene expression modules. Together, these results indicate that PBEF is a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI.

Publication Title

Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9368
Mouse lung with recombinant human soluble PBEFtreatment and ventilator-induced lung injury: age 8-12wks
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have previously demonstrated that pre-B-cell colony enhancing factor (PBEF) ais a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility118. In the current study, we explored the mechanistic participation of PBEF in ALI and ventilator-induced associated lung injury (VIALI). Initial in vitro studies and demonstrated rhPBEF aas a direct rat neutrophil chemotactic factor in vitro producing marked in vivo increases in BAL leukocytes (PMNs) in vivo following (intratracheal injection (,IT) in C57B6 mice. These latter changes were accompanied by increased BAL levels of the PMN chemoattractants (, KC and MIP2), and modest changes in lung vascular and but were not associated with significant increasesin alveolar permeability. We next explored the potential synergism between rhPBEF administration (IT) and a mechanical ventilation model of modest VILI lung injury (4 hours, 30 ml/kg tidal volume). We and observed dramatic synergistic increases in BAL PMNs, and both BAL protein and cytokine levels (IL-6, TNF-?, KC). Gene expression profiling Microarray analysis further supported a major role for PBEF in the induction of gene modules associated with ALI and VALI (NFkB pathway, leukocyte extravasation, apoptosis, toll receptor signaling). Finally, we exposed wild type and heterozygous PBEF+/- mice (targeted deletion of a single PBEF allele deletion) to a model of severe VILImechanical ventilation-induced lung injury (4 hours, 40 ml/kg tidal volume). PBEF+/- mice were significantly protected from VIALI-associated increases in BAL protein and BAL IL-6 levels and exhibited significantly reduced expression of ALI-associated gene expression modules. Together, these results indicate that PBEF is a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI.

Publication Title

Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34925
Expression data from knockdown of G9a in MDA-MB231 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

G9a is an H3K9m2 methyltransferase, which is critical in controlling gene suppression and DNA methylation. We used microarray analysis to identify the target genes that are regulated by G9a in MDA-MB231 cells, in which E-cadherin is silenced.

Publication Title

G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE9526
Expression data from cumulus cells that surround oocytes resulting in early or late cleaving embryos
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Besides the established selection criteria based on embryo morphology and blastomere number, new parameters for embryo viability are needed to improve the clinical outcome of in vitro fertilization (IVF) and more particular of elective single embryo transfer (eSET). The aim of the study was to analyse genome-wide whether the embryo viability was reflected by the expression of genes in the oocyte surrounding cumulus cells. Early cleavage (EC) was chosen as a parameter for embryo viability.

Publication Title

Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact