refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 212 results
Sort by

Filters

Technology

Platform

accession-icon GSE91037
Expression data from ancestrally diverse group of prostate cancer patients
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

African American men are disproportionately affected by both vitamin D deficiency and increased risk of prostate cancer.

Publication Title

Prostatic compensation of the vitamin D axis in African American men.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP064345
RNA-Seq profiling of Ewing''s sarcoma and MSC cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Comparison of expression profile of Ewing''s sarcoma with cell of origin, mesenchymal stem cells with the goal of identifying novel therapeutic targets. Overall design: 3 Ewing''s cell lines compared to 2 MSC cell lines

Publication Title

Exploring the surfaceome of Ewing sarcoma identifies a new and unique therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25282
HP1gamma Knock Down in Human cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Study of HP1 Knock Down on gene expression and splicing regulation in Human HeLa cells

Publication Title

Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE65783
Expression data from intact and ventilation-preconditioned murine lungs
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To study the effects of previous exposure to mechanical ventilation may modify the development of Ventilator-induced lung injury, preconditioning was induced by low-pressure ventilation for 90 minutes. After 1 week, intact (sham) and preconditioned mice were sacrificed, the lungs extracted and gene expression measured in order to identify differences responsible for the observed tolerance to ventilator-induced lung injury observed in preconditioned animals.

Publication Title

Exposure to mechanical ventilation promotes tolerance to ventilator-induced lung injury by Ccl3 downregulation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE15258
Whole blood transcript profiling of rheumatoid arthritis patients
  • organism-icon Homo sapiens
  • sample-icon 83 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The whole blood was collected pre-treatment from rheumatoid arthritis patients starting the anti_TNF therapy. All patients were nave to anti_TNFs. The disease activity was measured using the DAS28 score at the pre-treatment visit1 (DAS28_v1) and 14 weeks after treatment visit3 (DAS28_v3). The response to the therapy was evaluated using the EULAR [European League Against Rheumatism] definition of the response. The objective of the data analysis was to identify gene expression coorelating with response as well as to identify genes that differentiate responders versus non-responders pre-treatment. The results of this investigation identified 8 trainscripts that predict responders vs. non-responders with 89% accuracy.

Publication Title

Convergent Random Forest predictor: methodology for predicting drug response from genome-scale data applied to anti-TNF response.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP100979
HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited. We have developed an in vivo heat shock protocol to analyze the HSR in mice and dissected heat shock factor 1 (HSF1)-dependent and -independent pathways. Whilst the induction of proteostasis-related genes was dependent on HSF1, the regulation of circadian function related genes, indicating that the circadian clock oscillators have been reset, was independent of its presence. Furthermore, we demonstrate that the in vivo HSR is impaired in mouse models of Huntington's disease but we were unable to corroborate the general repression of transcription after a heat shock found in lower eukaryotes. Overall design: RNA-Seq was performed on mRNA isolated from quadriceps femoris muscle of 24 mice. These mice were of wild type, R6/2, and Hsf1-/- genotypes. Two mice of each genotype were tested in four conditions: (1) heat shock, (2) control heat shock, (3) HSP90 inhibition (NVP-HSP990), and (4) HSP90 inhibition vehicle.

Publication Title

HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models.

Sample Metadata Fields

Age, Specimen part, Treatment, Subject

View Samples
accession-icon SRP076811
A MOUSE MODEL OF ALCOHOLIC LIVER FIBROSIS-ASSOCIATED ACUTE KIDNEY INJURY IDENTIFIES KEY MOLECULAR PATHWAYS
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We reported this study established a mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. Overall design: kidney mRNA profiles of Olive oil, CCl4, EtOH, and CCl4+EtOH treatment in C57BL/6 mice were generated by deep sequencing.

Publication Title

A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE6082
An injected bacterial effector targets chromatin access for NF-kB as a strategy to shape transcription of immune genes
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Phosphorylation of histone H3 at Serine 10 emerges as a mechanism increasing chromatin accessibility of the transcription factor NF-kB for a particular set of immune genes. Here we report that a bacterial pathogen uses this strategy to shape the transcriptional response of infected host cells. We identify the Shigella flexneri type III protein effector OspF as a Dual Specific Phosphatase. OspF dephosphorylates MAP kinases within the nucleus impairing histone H3 phosphorylation at Serine 10 in a gene-specific manner. Therefore, OspF reprograms the transcriptional response for inactivation of a subset of NF-kB responsive genes. This regulation leads to repression of polymorphonuclear leukocytes recruitment in infected tissues. Thus, pathogens have evolved the ability to precisely modulate host cell epigenetic information as a strategy to repress innate immunity.

Publication Title

An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44318
Expression data from Caenorhabditis elegans fed with 13L cocoa peptide
  • organism-icon Caenorhabditis elegans
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Cocoa protein content is a very interesting source for isolation of antioxidant bio-peptides, which can be used for the prevention of age-related diseases. We use microarrays to study the global genome expression of C. elegans fed with a peptide (13L) isolated from cocoa.

Publication Title

A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16097
Transcriptome of BAHD1 knock-down HEK293 cells with siRNA
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene silencing via heterochromatin formation plays a major role in cell differentiation and maintenance of homeostasis. Here, we report the identification and characterization of a novel heterochromatinization factor in vertebrates, Bromo Adjacent Homology Domain-containing protein 1 (BAHD1). BAHD1 interacts with HP1, MBD1, HDAC5 and with several transcription factors. Through electron and immunofluorescence microscopy studies, we show that BAHD1 overexpression directs HP1 to specific nuclear sites and promotes formation of large heterochromatic domains, which lack acetyl histone H3 and are enriched in H3 trimethylated at lysine 27. Furthermore, ectopically expressed BAHD1 colocalizes with the heterochromatic X inactive chromosome. As highlighted by whole genome microarray analysis of BAHD1 knock down cells, BAHD1 represses several proliferation and survival genes and in particular, the insulin-like growth factor II gene (IGF2). BAHD1 specifically binds the CpG-rich P3 promoter of IGF2. This region contains DNA binding sequences for the transcription factor SP1, with which BAHD1 co-immunoprecipitates. Collectively, these findings provide evidence that BAHD1 acts as a silencer by recruiting proteins that coordinate heterochromatin assembly at specific sites in the genome.

Publication Title

Human BAHD1 promotes heterochromatic gene silencing.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact