refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 114 results
Sort by

Filters

Technology

Platform

accession-icon GSE42221
Comparative intraindividual transcriptome analysis of B-precursor ALL of childhood
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The objective of this study was the assessment of transcriptional dysregulation in particular with regard to B-cell differentiation factors. Most studies focus on cross-section analyses of various leukemia subtypes to identify differentially regulated genes lacking suitable reference models. Here we applied comparative intraindividual transcriptome analysis of B-precursor ALL of childhood, which introduces a side-by-side analysis of leukemic cells and matched normal lymphoblasts from the same individual in complete continuous remission after the end of re-induction therapy. This approach reduces noise by eliminating interindividual variability.

Publication Title

Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE34980
RNase Y of Staphylococcus aureus and its role in the activation of virulence genes
  • organism-icon Staphylococcus aureus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix S. aureus Genome Array (saureus)

Description

RNase Y of Bacillus subtilis is a key member of the degradosome and important for bulk mRNA turnover. In contrast to B. subtilis, the RNase Y homologue (rny/cvfA) of Staphylococcus aureus is not essential for growth. Here we found that RNase Y plays a major role in virulence gene regulation. Accordingly, rny deletion mutants demonstrated impaired virulence in a murine bacteraemia model. RNase Y is important for the processing and stabilisation of the immature transcript of the global virulence regulator system SaePQRS. Moreover, RNase Y is involved in the activation of virulence gene expression at the promoter level. This control is independent of both the virulence regulator agr and the saePQRS processing and may be mediated by small RNAs some of which were shown to be degraded by RNase Y. Besides this regulatory effect, mRNA levels of several operons were significantly increased in the rny mutant and the half-life of one of these operons was shown to be extremely extended. However, the half-life of many mRNA species was not significantly altered. Thus, RNase Y in S. aureus influences mRNA expression in a tightly controlled regulatory manner and is essential for coordinated activation of virulence genes.

Publication Title

RNase Y of Staphylococcus aureus and its role in the activation of virulence genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16134
Bacterial Correlates of Gingival Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 307 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis.

Publication Title

Subgingival bacterial colonization profiles correlate with gingival tissue gene expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10334
Transcriptomes in Healthy and Diseased Gingival Tissues
  • organism-icon Homo sapiens
  • sample-icon 242 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We examined gene expression signatures in healthy and diseased gingival tissues in 90 patients. Analysis of the gingival tissue transcriptome in states of periodontal health and disease may reveal novel insights of the pathobiology of periodontitis.

Publication Title

Transcriptomes in healthy and diseased gingival tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14434
U1 Adaptors: a new gene silencing technology
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goal of the microarray experiment was to do a head-to-head comparison of the U1 Adaptor technology with siRNA in terms of specificity at the genome-wide level. U1 Adaptors represent a novel gene silencing method that employs a mechanism of action distinct from antisense and RNA interference (RNAi). The U1 Adaptor is a bifunctional oligonucleotide having a Target Domain that is complementary to a site in the target gene's terminal exon and a U1 Domain that binds to the U1 small nuclear RNA (snRNA) component of the U1 small nuclear ribonucleoprotein (U1 snRNP) splicing factor. Tethering of U1 snRNP to the target pre-mRNA inhibits 3' end processing (i.e., polyA tail addition) leading to degradation of that RNA species within the nucleus thereby reducing mRNA levels. We demonstrate that U1 Adaptors can specifically inhibit both reporter and endogenous genes. Further, targeting the same gene either with multiple U1 Adaptors or with U1 Adaptors and small interfering RNAs (siRNAs), strongly enhances gene silencing, the latter as predicted from their distinct mechanisms of action. Such combinatorial targeting requires lower amounts of oligonucleotides to achieve potent silencing.

Publication Title

Gene silencing by synthetic U1 adaptors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48643
A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Objective

Publication Title

A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13946
Comparison of gamma delta intraepithelial lymphocytes from DSS-treated and untreated colon
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

gamma delta intraepithelial lymphocytes were isolated from the colons of DSS-treated and untreated mice. Total RNAs were isolated and compared by Affymetrix DNA microarray.

Publication Title

Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58969
Effect of fbw7 deletion in mouse pancreatic ducts
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The adult pancreas is capable of limited regeneration after injury, but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into -cells. The induced -cells resemble islet -cells in morphology and histology, express genes essential for -cell function, and release insulin upon glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type.

Publication Title

Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP139796
Uterine glands synchronize embryo-endometrial interactions and coordinate on-time embryo implantation and stromal cell decidualization for pregnancy success
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

By employing FOXA2-deficient mouse models coupled with LIF repletion, we reveal definitive roles of uterine glands in pregnancy establishment.These studies provide original evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success. Overall design: Uterine transcriptomes of control and Foxa2-deficient mice were generated on gestational day (GD) 4 and GD 6 following LIF-repletion. All time points were done in quadruplicates.

Publication Title

Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE6689
Expression data during stem cell differentiation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Stem cell development requires selection of specific genetic programs to direct cellular fate. Using microarray technology, we profile expression trends at selected timepoints during stem cell differentiation to characterize these changes.

Publication Title

Genomic chart guiding embryonic stem cell cardiopoiesis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact