refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 827 results
Sort by

Filters

Technology

Platform

accession-icon GSE22010
TMPRSS2:ERG promotes invasiveness and epithelial to mesenchymal transition in prostate cancer model
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Recently, a frequent chromosomal aberration fusing Androgen regulated TMPRSS2 promoter and the ERG gene (T/ERG) was discovered in prostate cancer. Several studies demonstrated cooperation between the T/ERG and other defective pathways in cancer progression however, the biological mechanism by which the T/ERG operates is yet to be determined. Using immortalized prostate epithelial cells (EP) model we were able to show that EP with the combination of androgen receptor(AR) and T/ERG(EP-AR T/ERG cell line) demonstrate an Epithelial to Mesenchymal Transition (EMT) manifested by a mesenchyme-like morphological appearance and behavior.

Publication Title

TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE31458
Expression data from nave and MPTP-exposed cholinergic transgenic mice
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

PD is the second most common neurodegenerative disease worldwide with growing prevalence. MPTP is a neurotoxin which causes the appearance of Parkinson's disease (PD) pathology. The involvement of the cholinergic system in PD has been identified decades ago and anti-cholinergic drugs were upon the first drugs used for symptomatic treatment of PD. Of note, MPTP intoxication is a model of choice for symptomatic neuroprotective therapies since it have been quite predictive. Mice were exposed to the dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), with or without the protective acetylcholinesterase (AChE-R) variant. Transgenic AChE-S (the synaptic variant), AChE-R (the shorter, protective variant) and FVB/N control mice were included in this study. Two brain regions were examined: the pre-frontal cortex (PFC) and the striatal caudate-putamen (CPu). Each condition (i.e brain region and transgenic variant) was examined on both naive and MPTP-exposed mice.

Publication Title

Meta-analysis of genetic and environmental Parkinson's disease models reveals a common role of mitochondrial protection pathways.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE13460
Effect of wt versus mutant hsa-miR-122 overexpression on spontaneous hESC differentiation
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We aimed to determine whether overexpression of endoderm-specific miRNA may affect hESC differentiation. To this end, we analyzed the effect of lentiviral-based overexpression of liver-specific miR-122 on hESC differentiation, using genomewide gene microarrays. Stable overexpression of endoderm-specific miR-122 in hESC resulted in increased expression of a few endodermal markers in spontaneously-differentiating hESC, but had no clear effect on directing differentiation towards an endodermal fate; rather, it delayed the general differentiation of hESC.

Publication Title

MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE38088
Expression data from human induced pluripotent stem cell-derived teratomas and embryoid bodies
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The tumorigenicity of human pluripotent stem cells (hPSCs) is a major safety concern for their application in regenerative medicine. Here we identify the tight-junction protein Claudin-6 as a specific cell surface marker of hPSCs that can be used to selectively remove Claudin-6-positive cells from mixed cultures. We show that Claudin-6 is absent in adult tissues but highly expressed in undifferentiated cells, where it is dispensable for hPSC survival and self-renewal. We use three different strategies to remove Claudin-6-positive cells from mixed populations: an antibody against Claudin-6; a cytotoxin-conjugated antibody that selectively targets undifferentiated cells; and clostridium perfringens enterotoxin, a toxin that binds several Claudins, including Claudin-6, and efficiently kills undifferentiated cells, thus eliminating the tumorigenic potential of hPSC-containing cultures. This work provides a proof of concept for the use of Claudin-6 to eliminate residual undifferentiated hPSCs from culture, highlighting a strategy that may increase the safety of hPSC-based cell therapies.

Publication Title

Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE57909
Expression data from human pluripotent stem cells treated with PluriSIn#2
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Pluripotent-specific inhibitors (PluriSIns) make a powerful tool for studying the mechanisms that control the survival of human pluripotent stem cells (hPSCs). Here we characterize PluriSIn#2 as a novel selective indirect inhibitor of topoisomerase II alpha (TOP2A). We find that TOP2A is uniquely expressed in undifferentiated hPSCs, and that its inhibition results in their rapid cell death. These findings reveal a dependency of hPSCs on the activity of TOP2A, which can be harnessed for their selective elimination from culture.

Publication Title

Brief reports: Controlling the survival of human pluripotent stem cells by small molecule-based targeting of topoisomerase II alpha.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE64647
Expression data from diploid human pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human pluripotent stem cells (hPSCs) tend to acquire chromosomal aberrations in culture, which may increase their tumorigenicity. However, the cellular mechanism(s) underlying these aberrations are largely unknown. Here we show that the DNA replication in aneuploid hPSCs is perturbed, resulting in high prevalence of defects in chromosome condensation and segregation. Global gene expression analyses in aneuploid hPSCs revealed decreased levels of actin cytoskeleton genes and their common transcription factor SRF. Down-regulation of SRF or chemical perturbation of actin cytoskeleton organization in diploid hPSCs resulted in increased replication stress and perturbation of chromosome condensation, recapitulating the findings in aneuploid hPSCs. Altogether, our results revealed that in hPSCs DNA replication stress results in a distinctive defect in chromosome condensation, underlying their ongoing chromosomal instability. Our results shed a new light on the mechanisms leading to ongoing chromosomal instability in hPSCs, and may be relevant to tumor development as well.

Publication Title

Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE21262
Expression data from undifferentiated and induced human pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Due to their somatic cell origin, human induced pluripotent stem cells (HiPSCs) are assumed to carry a normal diploid genome, and adaptive chromosomal aberrations have not been fully evaluated. Here, we analyzed the chromosomal integrity of 66 HiPSC and 38 human embryonic stem cell (HESC) samples from 18 different studies by global gene expression meta-analysis. We report identification of a substantial number of cell lines carrying full and partial chromosomal aberrations, half of which were validated at the DNA level. Several aberrations resulted from culture adaptation, and others are suspected to originate from the parent somatic cell. Our classification revealed a third type of aneuploidy already evident in early passage HiPSCs, suggesting considerable selective pressure during the reprogramming process. The analysis indicated high incidence of chromosome 12 duplications, resulting in significant enrichment for cell cycle related genes. Such aneuploidy may limit the differentiation capacity and increase the tumorigenicity of HiPSCs.

Publication Title

Identification and classification of chromosomal aberrations in human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE21244
Expression data from undifferentiated human pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Due to their somatic cell origin, human induced pluripotent stem cells (HiPSCs) are assumed to carry a normal diploid genome, and adaptive chromosomal aberrations have not been fully evaluated. Here, we analyzed the chromosomal integrity of 66 HiPSC and 38 human embryonic stem cell (HESC) samples from 18 different studies by global gene expression meta-analysis. We report identification of a substantial number of cell lines carrying full and partial chromosomal aberrations, half of which were validated at the DNA level. Several aberrations resulted from culture adaptation, and others are suspected to originate from the parent somatic cell. Our classification revealed a third type of aneuploidy already evident in early passage HiPSCs, suggesting considerable selective pressure during the reprogramming process. The analysis indicated high incidence of chromosome 12 duplications, resulting in significant enrichment for cell cycle related genes. Such aneuploidy may limit the differentiation capacity and increase the tumorigenicity of HiPSCs.

Publication Title

Identification and classification of chromosomal aberrations in human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE21243
Expression data from undifferentiated human induced pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Due to their somatic cell origin, human induced pluripotent stem cells (HiPSCs) are assumed to carry a normal diploid genome, and adaptive chromosomal aberrations have not been fully evaluated. Here, we analyzed the chromosomal integrity of 66 HiPSC and 38 human embryonic stem cell (HESC) samples from 18 different studies by global gene expression meta-analysis. We report identification of a substantial number of cell lines carrying full and partial chromosomal aberrations, half of which were validated at the DNA level. Several aberrations resulted from culture adaptation, and others are suspected to originate from the parent somatic cell. Our classification revealed a third type of aneuploidy already evident in early passage HiPSCs, suggesting considerable selective pressure during the reprogramming process. The analysis indicated high incidence of chromosome 12 duplications, resulting in significant enrichment for cell cycle related genes. Such aneuploidy may limit the differentiation capacity and increase the tumorigenicity of HiPSCs.

Publication Title

Identification and classification of chromosomal aberrations in human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE99236
Transcriptional changes induced in human CD4+ cells upon ectopic expression of FOXP3
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Pico Assay HT (clariomshumanht)

Description

Human CD4+CD45RA+CD25- cells were lentivirally transduced with wild-type or mutated (A384T or R397W) FOXP3, or an empty vector (EV). Transduced cells were sorted 14 days post-transduction based on GFP expression, and were restimulated with soluble anti-CD3 (30 ng/mL) and irradiated PBMCs (3x) for 14 more days. Cells were then activated with 0.5 g/ml of phytohemagglutinin (PHA) in the presence or absence of SGF003 (8 g/mL), and total RNA was extracted for microarray analysis. Overall, this study highlights the functional impact of TIP60 in FOXP3-driven Treg biology and provides a novel target for manipulation of human Treg activity.

Publication Title

Suppression by human FOXP3<sup>+</sup> regulatory T cells requires FOXP3-TIP60 interactions.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact