refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 157 results
Sort by

Filters

Technology

Platform

accession-icon GSE4356
Myc Activation in Beta Cells in vivo
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Deregulated expression of the Myc transcription factor is a frequent causal mutation in human cancer. Thousands of putative Myc target genes have been identified in in vitro studies, indicating that Myc exerts highly pleiotropic effects within cells and tissues. However, the complexity and diversity of Myc gene targets has confounded attempts at identifying which of these genes are the critical targets mediating Myc-driven tumorigenesis in vivo. Acute activation of Myc in a reversibly switchable transgenic model of Myc-mediated cell tumorigenesis induces rapid tumor onset whereas subsequent Myc de-activation triggers equally rapid tumor regression. Thus, sustained Myc activity is required for tumor maintenance. We have used this reversibly switchable kinetic tumor model in combination with high-density oligonucleotide microarrays to develop an unbiased strategy for identifying candidate Myc-regulated genes responsible for maintenance of Myc-dependent tumors. Consistent with known Myc functions, some Myc-regulated genes are involved in cell growth, cycle and proliferation. In addition, however, many Myc-regulated genes are specific to cells, indicating that a significant component of Myc action is cell-type specific. Finally, we identify a very restricted cadre of genes whose expression is inversely regulated upon Myc activation-induced tumor progression and de-activation-induced tumor regression. By definition, such genes are candidates for tumor maintenance functions. Combining reversibly switchable, transgenic models of tumor formation and regression with genomic profiling offers a novel strategy with which to deconvolute the complexities of oncogenic signaling pathways in vivo

Publication Title

Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25908
Distinct Protein Degradation Induced by Different Disuse Models of Skeletal Muscle Atrophy
  • organism-icon Mus musculus
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Skeletal muscle atrophy is a consequence of many diseases, environmental insults, inactivity, age and injury. Atrophy is characterized by active degradation and removal of contractile proteins and a reduction in fiber size. Animal models have been extensively used to identify pathways leading to atrophic conditions. Here we have used genome-wide expression profiling analysis and quantitative PCR to identify the molecular changes that occur in two clinically relevant animal mouse models of muscle atrophy, hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7 and 14 days after insult. The total amount of muscle loss as measured by wet weight and muscle fiber size was equivalent between models, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tentomy resulted in the regulation of significantly more mRNA transcripts then casting. Analysis of the regulated genes and pathways suggest that the mechanism of atrophy is distinct between these models. The degradation following casting appears ubiquitin-proteasome-mediated while degradation following tenotomy appears lysosomal and matrix-metalloproteinase (MMP)-mediated. This data suggests that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat the atrophy seen under different conditions.

Publication Title

Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon SRP147554
Single cell RNA-sequencing of human fetal kidneys
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

10X-based scRNA-seq data human fetal kidneys at 5 different ages Overall design: w9, w11, w13, w16 and w18 human fetal kidneys

Publication Title

Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP073613
Identification of mRNAs with reduced ribosomal loading upon knock-down of translation factor DAP5 from hESCs.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We have generated stable human ESCs (H9) expressing control or DAP5-targeting shRNA. Polysome profiles reveal no major changes in overall translation. PolyA+ RNA and RNA accociated with heavy polysomal fractions were purified in biological duplicates and sequenced using Illumina HiSeq 2000 instrument. We identified 122 potential mRNA targets of DAP5 translation that display reduced ribosomal loading, and hence reduced translation, in the absence of DAP5. Overall design: Total mRNA and heavy polylsomal fractions from shNT and shDAP5 expressing hESCs, each in duplicate, was deep sequenced.

Publication Title

Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE112776
Expression data for High and Low permeable brain metastases in 231-BR mouse model
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

All highly and poorly permeable metastases from the same mouse brain were collected by laser capture microdissection. Total RNA from both metastatic lesions and immediate microenvironment was isolated from 5 mice bearing 231-BR metastases. As control 4 healthy mouse brains were included.

Publication Title

Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE22165
Effect of methylene blue on the genomic response to reperfusion injury induced by cardiac arrest and cardiopulmonary resuscitation in porcine brain
  • organism-icon Sus scrofa
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Background: Cerebral ischemia/reperfusion injury is a common secondary effect of cardiac arrest which is largely responsible for postresuscitative mortality. Therefore development of therapies which restore and protect the brain function after cardiac arrest is essential. Methylene blue (MB) has been experimentally proven neuroprotective in a porcine model of global ischemia-reperfusion in experimental cardiac arrest. However, no comprehensive analyses have been conducted at gene expression level.

Publication Title

Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP077671
Myc and YAP roles in the control of the cell cycle [3T9 RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNAseq analysis of YAP and Myc induced in quiescent and confluent 3T9 fibroblasts Overall design: RNAseq analysis of YAP and Myc induced in quiescent and confluent 3T9 fibroblasts

Publication Title

Transcriptional integration of mitogenic and mechanical signals by Myc and YAP.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE21760
Expression data from human HeLa cells exposed to interferon gamma for 2, 4, and 6 hours
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The ubiquitin proteasome system (UPS) is known to possess important regulatory functions in the immune response. To gain a better and first comprehensive insight into the mechanisms of remodelling of UPS related gene expression inresponse to interferon-gamma, we undertook a comparative gene expression profiling during interferon-gamma stimulation at very early time points.

Publication Title

Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP059775
C1 analysis using mixtures of human (HEK) and mouse (3T3) cells
  • organism-icon Homo sapiens
  • sample-icon 192 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

A cell supsension containing an equal mix of HEK and 3T3 cells was used in the Fluidigm C1 Overall design: Suspensions of 3T3 and HEK cells were diluted down to a concentration of 250,000 per mL and mixed 1:1, then loaded onto two medium C1 cell capture chips.

Publication Title

Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067454
Myc-dependent gene activation and repression in oncogene-addicted liver tumors (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Tumors driven by activation of the transcription factor Myc generally show oncogene addiction. However, the gene-expression programs that depend upon sustained Myc activity in those tumors remain unknown. We have addressed this issue in a model of liver carcinoma driven by a reversible tet-Myc transgene, combining gene expression profiling with the mapping of Myc and RNA Polymerase II on chromatin. Switching off the oncogene in advanced carcinomas revealed that Myc is required for the continuous activation and repression of distinct sets of genes, constituting no more than half of those deregulated during tumor progression, and an even smaller subset of all Myc-bound genes. We further showed that a Myc mutant unable to associate with the co-repressor protein Miz1 is defective in the initiation of liver tumorigenesis. Altogether, our data provide the first detailed analysis of a Myc-dependent transcriptional program in a fully developed carcinoma, revealing that the critical effectors of Myc in tumor maintenance must be included within defined subsets (ca. 1,300 each) of activated and repressed genes. Overall design: RNAseq samples of control liver (n=11), tet-Myc tumors (n=16), tet-Myc tumors with short-term Myc inactivation (n=8), tet-MycVD tumors (n=11)

Publication Title

Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact