refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 1675 results
Sort by

Filters

Technology

Platform

accession-icon GSE26111
Whole-genome gene expression profiling of Pik3cg-depleted mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

We performed whole-genome gene expression profiling in Pik3cg-/- mice and subsequent gene ontology clustering of differentially expressed genes compared to wild type mice, in order to investigate the role of Pik3cg in platelet membrane biogenesis and blood coagulation.

Publication Title

Maps of open chromatin guide the functional follow-up of genome-wide association signals: application to hematological traits.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP188673
A time course study by mRNA Sequencing to identify transcriptional changes in mice lung development
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mammalian fetal lung development is a complex biological process.Despite considerable progress, a comprehensive understanding of the dynamic regulatory networks that govern postnatal alveolar lung development is still lacking. The purpose of this study as part of the LungMAP consortium (www.lungmap.net) is to understand the transcriptional changes in the process of mammalian lung development. Overall design: Method: We isolated alveolar septa from c57BL/6 mice by laser capture microdissection from 14 time points (E16.5, P0.5, P1, P1.5, P2.5, P4, P5, P7, P10, P13.5, P15, P19, P23, and P28) and performed RNA-Sequencing by Illumina Hi-Seq 2500 .

Publication Title

LungMAP: The Molecular Atlas of Lung Development Program.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE7390
Strong Time Dependence of the 76-Gene Prognostic Signature
  • organism-icon Homo sapiens
  • sample-icon 197 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background: Recently a 76-gene prognostic signature able to predict distant metastases in lymph node-negative (N-) breast cancer patients was reported. The aims of this study conducted by TRANSBIG were to independently validate these results and to compare the outcome with clinical risk assessment. Materials and Methods: Gene expression profiling of frozen samples from 198 N- systemically untreated patients was performed at the Bordet Institute, blinded to clinical data and independent of Veridex. Genomic risk was defined by Veridex, blinded to clinical data. Survival analyses, done by an independent statistician, were performed with the genomic risk and adjusted for the clinical risk, defined by Adjuvant!Online. Results: The actual 5- and 10-year time to distant metastasis (TDM) were 98% (88%-100%) and 94% (83%-98%) respectively for the good profile group and 76% (68%- 82%) and 73% (65%-79%) for the poor profile group. The actual 5- and 10-year overall survival (OS) were 98% (88%-100%) and 87% (73%-94%) respectively for the good profile group and 84% (77%-89%) and 72% (63%-78%) for the poor profile group. We observed a strong time-dependency of this signature, leading to an adjusted HR of 13.58 (1.85-99.63) and 8.20 (1.10-60.90) at 5 years, and 5.11 (1.57-16.67) and 2.55 (1.07-6.10) at 10 years for TDM and OS respectively. Conclusion: This independent validation confirmed the performance of the 76-gene signature and adds to the growing evidence that gene expression signatures are of clinical relevance, especially for identifying patients at high risk of early distant metastases.

Publication Title

Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon GSE1584
EP - GMP
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Mouse erythroid progenitors (EP) in comparison to granulocyte/monocyte - macrophage progenitors (GMP) from 10 - 16 week old C57/Bl6 - S129Ola (mixed genetic background) purified by flow cytometry

Publication Title

Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP132414
Molecular Signature of CAID Syndrome: Noncanonical Roles of SGO1 in Regulation of TGF-ß Signaling and Epigenomics. [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

RNA sequencing of human dermal fibroblasts from CAID patients passage 8 and passage 14 Overall design: RNA sequencing was perfomed on 3 wild type controls and 3 CAID patients fibroblast cell lines at cell passages 8 and 14. Sequencing was performed on Illumina Hiseq4000, 8 samples/lanes, paired-end.

Publication Title

Molecular Signature of CAID Syndrome: Noncanonical Roles of SGO1 in Regulation of TGF-β Signaling and Epigenomics.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP072881
Gene expression profiling during cardiac maturation, hypertrophy and after KD of TET2
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, NextSeq 500

Description

Methylation at 5-cytosine (5-mC) is a fundamental epigenetic DNA modification associated recently with cardiac disease. In contrast, the role of 5-hydroxymethylcytosine (5-hmC) – 5-mC's oxidation product – is unknown in the context of the heart. Here, we assess the hydroxymethylome in embryonic, neonatal, adult and hypertrophic mouse cardiomyocytes, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks during heart development and failure. DNA hydroxymethylation marks gene bodies of highly expressed genes and distal regulatory regions with enhanced activity. Pathological hypertrophy is characterized by a partial shift towards a fetal-like distribution pattern. We further demonstrate a regulatory function of TET2 and provide evidence that the expression of key cardiac genes, such as Myh7 is modulated by TET2-mediated 5-hmC deposition on the gene body and at enhancers in cardiac cells. We thus provide the first genome-wide analysis of 5-hmC in the cardiomyocyte, and establish the role of this epigenetic modification in heart development and disease Overall design: Profiling of the transcriptome of embryonic, neonatal, adult, 1 week hypertrophic cardiomyocytes, sh-control and sh-TET2 cardiomyocytes. Two biological replicates were profiled for each cell type.

Publication Title

DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE35864
The National NeuroAIDS Tissue Consortium Brain Gene Array: Two types of HIV-associated neurocognitive impairment
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Finding the differences in gene expression in three regions of the brain, basal ganglia, white matter, and frontal cortex, in normal, HIV infected, HIV infected with neurocognitive impairment, and HIV infected with both neurocognitive impairment and encephalitis patients.

Publication Title

The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon GSE72829
Diagnosis of childhood bacterial and viral infection using host RNA expression
  • organism-icon Homo sapiens
  • sample-icon 202 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanRef-8 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE72809
Diagnosis of childhood bacterial and viral infection using host RNA expression [Discovery set]
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanRef-8 v3.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE72810
Diagnosis of childhood bacterial and viral infection using host RNA expression [validation set]
  • organism-icon Homo sapiens
  • sample-icon 146 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact