refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 580 results
Sort by

Filters

Technology

Platform

accession-icon GSE26267
Comparison of hepatic gene expression between short-term calorie restricted wild-type and Dgat1 deficient middle-aged female mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Leanness is associated with increased lifespan and is linked to favorable metabolic conditions promoting life extension.

Publication Title

Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE12132
Rat response to changes in developmental stage - 3 types of tissue, 3 gravity conditions, 2 developmental conditions
  • organism-icon Rattus norvegicus
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Transcriptional crosstalk between mammary gland, liver and adipose tissue

Publication Title

Homeorhetic adaptation to lactation: comparative transcriptome analysis of mammary, liver, and adipose tissue during the transition from pregnancy to lactation in rats.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7400
Hematopoietic stem cell mobilization with G-CSF (gene expression profiling)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Granulocyte-colony stimulating factor (G-CSF) is used to boost granulocyte counts in immunocompromised patients, but its effects on the immune system may be counter productive. We tested the hypothesis that G-CSF mobilized peripheral blood stem cell (PBSC) products are immunologically down regulated based on gene microarray analysis.

Publication Title

Hematopoietic stem cell mobilization with G-CSF induces innate inflammation yet suppresses adaptive immune gene expression as revealed by microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7510
Acute graft-versus-host disease (gene expression profiling)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for high-risk hematological malignancies, yet a major complication associated with this therapy is acute graft-versus-host disease (GVHD). Despite a well-defined pathophysiological mechanism, there are no definitive markers for predicting acute GVHD development or progression to advanced stages. In the current study, we enrolled four acute GVHD and four acute GVHD-free recipients of allogeneic HSCT and collected peripheral blood just prior to onset of clinical acute GVHD for analysis on Affymetrix GeneChip Human Genome U133 Plus 2.0 microarrays. We noted significant differences in expression of 1,658 genes between control and acute GVHD patients, based on an analysis of covariance (ANCOVA) by type of transplant, a pooled error estimate, and a false discovery rate (FDR) of 10%. In conclusion, we offer the first report of a preliminary molecular signature of acute GVHD in allogeneic HSCT patients.

Publication Title

A preliminary gene expression profile of acute graft-versus-host disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP195418
Transcriptome Signature of Cellular Senescence
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000, Illumina HiSeq 2500

Description

Abstract: Cellular senescence, an integral component of aging and cancer, arises in response to diverse triggers, including telomere attrition, macromolecular damage, and signaling from activated oncogenes. At present, senescent cells are identified by the combined presence of multiple traits, such as senescence-associated protein expression and secretion, DNA damage, and ß-galactosidase activity; unfortunately, these traits are neither exclusively nor universally present in senescent cells. To identify robust shared markers of senescence, we have performed RNA-sequencing analysis across 8 diverse models of senescence triggered in human diploid fibroblasts (WI-38, IMR-90) and endothelial cells (HUVEC, HAEC) by replicative exhaustion, exposure to ionizing radiation or doxorubicin, and expression of the oncogene HRASG12V. The intersection of the altered transcriptomes revealed 47 RNAs consistently elevated and 26 RNAs consistently reduced across all senescence models, including many protein-coding mRNAs and some long noncoding RNAs. We propose that these shared transcriptome profiles will enable the identification of senescent cells in vivo, the investigation of their roles in aging and malignancy, and the development of strategies to target senescent cells therapeutically. Overall design: Transcriptomic analysis of various cell line models of senescence and their respective controls

Publication Title

Transcriptome signature of cellular senescence.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE7768
Expression data from spleens of mice immunized using LPS vs MPL as adjuvant.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

An unresolved issue in immunology is the extent to which inflammatory effects are needed for robust T cell responses. In this study, mice were immunized by iv injection using either high toxicity lipopolysaccharide (LPS) or low toxicity monophosphoryl lipid A (MPL) as adjuvant. Six hours after iv immunization, whole spleens were harvested and gene expression was measured in unfractionated splenic populations of cells. The analysis indicated that the low toxicity adjuvanticity of MPL was associated with TLR4-mediated signaling that was biased to the TRIF branch of TLR4, while LPS generated balanced MyD88 and TRIF-associated outcomes.

Publication Title

The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076677
Pericyte-like cells generated from human pluripotent stem cells support hematopoietic stem and progenitors ex vivo
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Various mesenchymal cell types have been identified as critical components of the hematopoietic stem/progenitor cell (HSPC) niche. Although several groups have described the generation of mesenchyme from human pluripotent stem cells (hPSC), the capacity of such cells to support hematopoiesis has not been reported. Here we have demonstrated that distinct mesenchymal subpopulations co-emerge from mesoderm during hPSC differentiation. Despite co-expression of common mesenchymal markers (CD73, CD105, CD90, PDGFRß), a subset of cells defined as CD146++CD140alow supported functional HSPC ex vivo while CD146­-CD140a+ cells drove differentiation. The CD146++ subset expressed genes associated with the HSPC niche and high levels of the Wnt inhibitors. HSPC support was contact-dependent and was mediated in part through JAG1 expression. Molecular profiling revealed remarkable transcriptional similarity between hPSC-derived CD146++ and primary human CD146++ perivascular cells. The derivation of diverse pools of mesenchymal populations from hPSC opens potential avenues to model their developmental and functional differences and to improve cell-based therapeutics from hPSC. Overall design: Our goal was to analyze and compare transcriptome of human pluripoten stem cell-derived mesenchyme (CD146++ and CD146-) with primary human lipoaspirate tissue-derived pericyte (CD146+) and CD146- mesenchymal populations.

Publication Title

Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE18768
Transcriptome analysis of epithelial and stromal contributions to mammogenesis in prepartum dry cows
  • organism-icon Bos taurus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Our overall objective is to identify key differences in gene expression signaling pathways in the epithelial and intralobular stromal compartments during prepartum mammary remodeling and development in the dry cow.

Publication Title

Transcriptome analysis of epithelial and stromal contributions to mammogenesis in three week prepartum cows.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53546
Loss of lamin B1 results in prolongation of S-phase and decondensation of chromosome territories in the interphase nucleus of mammalian cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Nuclear lamin B1 constitutes one of the major structural proteins in the lamina mesh. We silenced the expression of lamin B1 by RNA interference in the colon cancer cell line DLD-1 and showed a dramatic redistribution of H3K27me3 from the periphery to a more homogeneous nuclear dispersion; in addition we observed an increased frequency of micronuclei and nuclear blebs. By 3D-FISH analyses, we demonstrate that the volume and surface of chromosome territories were significantly larger in LMNB1-depleted cells, suggesting that lamin B1 is required to maintain chromatin condensation in interphase nuclei. These changes led to a prolonged S-phase due to activation of Chk1 and telomere attrition. Finally, silencing of LMNB1 resulted in extensive changes in alternative splicing of multiple genes and in a higher number of enlarged nuclear speckles. Taken together, our results suggest a mechanistic role of the nuclear lamina in the organization of chromosome territories, maintenance of genome integrity and proper gene splicing.

Publication Title

Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP070059
Genetic Tagging During Human Mesoderm Differentiation Reveals Tripotent Lateral Plate Mesodermal Progenitors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into exclusively bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Overall design: Our goal was to analyze transcriptome changes of mesoderm commitment during human embyronic stem cells differentiation. RNA were extracted and sequenced from two populations, human embryonic stem cells (H1 line) and the human early mesodermal progenitors (hEMP) differentiated from H1.

Publication Title

Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact