refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 119 results
Sort by

Filters

Technology

Platform

accession-icon GSE51883
Effect of Mirn378 overexpression on gene expression during C2C12 myogenic and BMP2-induced osteogenic differentiation
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression.

Publication Title

MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE30192
Effect of 5-azacytidine on gene expression in C2C12 myoblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mesenchymal progenitor cells can be differentiated in vitro into myotubes that exhibit many characteristic features of primary mammalian skeletal muscle fibers. However, in general, they do not show the functional excitation-contraction coupling or the striated sarcomere arrangement typical of mature myofibers. Epigenetic modifications have been shown to play a key role in regulating the progressional changes in transcription necessary for muscle differentiation. In this study, we demonstrate that treatment of murine C2C12 mesenchymal progenitor cells with 10 M of the DNA methylation inhibitor 5-azacytidine (5AC) promotes myogenesis, resulting in myotubes with enhanced maturity as compared to untreated myotubes. Specifically, 5AC treatment resulted in the upregulation of muscle genes at the myoblast stage while at later stages nearly 50 % of the 5AC-treated myotubes displayed a mature, well-defined sarcomere organization as well as spontaneous contractions that coincided with action potentials and intracellular calcium transients. Both the percentage of striated myotubes and their contractile activity could be inhibited by 20 nM TTX, 10 M ryanodine and 100 M nifedipine, suggesting that action potential-induced calcium transients are responsible for these characteristics. Our data suggest that genomic demethylation induced by 5AC overcomes an epigenetic barrier that prevents untreated C2C12 myotubes from reaching full maturity.

Publication Title

Epigenetics: DNA demethylation promotes skeletal myotube maturation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE6573
Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Preeclampsia complicates more than 3% of all pregnancies in the United States and Europe. High-risk populations include women with diabetes, dyslipidemia, thrombotic disorders, hyperhomocysteinemia, hypertension, renal diseases, previous preeclampsia, twin pregnancies, and low socioeconomic status. In the latter case, the incidence may increase to 20% to 25%. Preeclampsia is a major cause of maternal and fetal morbidity and mortality. Preeclampsia is defined by systolic blood pressure of more than 140 mm Hg and diastolic blood pressure of more than 90 mm Hg after 20 weeks gestation in a previously normotensive patient, and new-onset proteinuria. Abnormal placentation associated with shallow trophoblast invasion (fetal cells from outer cell layer of the blastocyst) into endometrium (decidua) and improper spiral artery remodeling in the decidua are initial pathological steps.

Publication Title

Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1557
Terminal heart failure
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Rats overexpressing the human renin and angiotensinogen genes die after seven weeks of end organ damage. They develop hypertension, heart hypertrophy and proteinuria.We compared terminal heart failure, these are indeed terminally ill to double transgenic animals suffering on hypertension, proteinuria and heart hypertrophy. In addition, Losartan-treated animals (10 mg/kg/d)showed similar physiological parameters (normotension, no proteinuria and no heart hypertrophy compared to control sprague dawley rats.

Publication Title

Cardiac gene expression profile in rats with terminal heart failure and cachexia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24057
Expression data from wild-type FY4 and the TF-KOs BAS1-, PHO2-, GCN4- and GCR2-deletion strains
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP173671
Gene expression signatures of SATB2-defficient vs wild-type adult neocortex
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

During CNS development, the nuclear protein SATB2 is expressed in superficial cortical layers and determines projection neuron identity. In the adult CNS, SATB2 is expressed in pyramidal neurons of all cortical layers and is a regulator of synaptic plasticity and long-term memory. Common variation in SATB2 locus confers risk of schizophrenia whereas rare, de novo structural and single nucleotide variants cause severe intellectual disability and absent or limited speech. To which extent symptoms in SATB2-related human pathologies depend on developmental or adult functions of the protein remains to be established. To characterize differences in SATB2 molecular function in developing vs adult neocortex, we compared SATB2 protein interactomes and SATB2-driven gene expression programs at the two ontogenetic stages by co-IP mass spectrometry and RNAseq analyses, respectively. Our results demonstrated that 1) SATB2 interacts with different protein networks at the two ontogenetic stages, with a switch from transcriptional repression towards organization of chromatin structure and 2) SATB2 determines differential transcriptional programs in neonatal vs adult cortex. Overall design: Analysis of neocortex transcriptomes of adult (3 month old) SATB2-deficient (Satb2flx/flx::Camk2a-Cre ) vs floxed mice

Publication Title

Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE19569
Expression data from wild-type FY4 and GCR2 deletion strain
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Expression data from wild-type FY4 and GCR2 deletion strain. Impact of the transcription factor Gcr2p on mRNA expression was investigated in the corresponding deletion strain in exponentially growing glucose minimal medium batch cultures.

Publication Title

Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24056
Expression data from wild-type FY4 and the GCN4-deletion strain
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The impact on mRNA expression of the transcription factors Bas1, Pho2, Gcn4 and Gcr2p was investigated in the corresponding deletion strains during exponential growth in glucose minimal media batch cultures.

Publication Title

Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24053
Expression data from wild-type FY4 and the BAS1-deletion strain
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The impact on mRNA expression of the transcription factors Bas1, Pho2, Gcn4 and Gcr2p was investigated in the corresponding deletion strains during exponential growth in glucose minimal media batch cultures.

Publication Title

Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24054
Expression data from wild-type FY4 and the PHO2-deletion strain
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The impact on mRNA expression of the transcription factors Bas1, Pho2, Gcn4 and Gcr2p was investigated in the corresponding deletion strains during exponential growth in glucose minimal media batch cultures.

Publication Title

Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact