refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 933 results
Sort by

Filters

Technology

Platform

accession-icon GSE72046
Transcriptome profiles of mice intestine and liver upon infection with Salmonella typhimurium (MC71-TT and MC71-DcdtB)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of the genotoxins as effectors during the course of acute and chronic infections remains poorly characterized.To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine chronic infections. Immunocompetent mice were chronically infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional (MC71-TT) or an inactive (MC71-DcdtB) typhoid toxin.

Publication Title

The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150062
RNA-Seq analysis of skin from bleomycin induced scleroderma murine models treated with EHP-101
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Systemic sclerosis (SSc) or scleroderma is a chronic multiorgan autoimmune disease of unknown etiology characterized by vascular, immunological and fibrotic abnormalities. Several lines of evidence have shown that the endocannabinoid system (ECS) may play a role in the pathophysiology of SSc. VCE-004.8, a CBD aminoquinone derivative, is a dual PPAR?/CB2 that alleviates bleomycin (BLM)-induced skin fibrosis. Herein we report that EHP-101, an oral lipidic formulation of VCE-004.8, prevents skin and lung fibrosis and collagen accumulation in BLM challenged mice. Immunohistochemistry analysis of the skin demonstrate that EHP-101 prevents macrophage infiltration, and the expression of Tenascin C (TNC), VCAM, and the a-smooth muscle actin (SMA). In addition, a reduced expression of vascular CD31, paralleling skin fibrosis, was also prevented by EHP-101. RNAseq analysis in skin biopsies showed a clear effect of EHP-101 in the inflammatory and epithelial-mesenchymal transition transcriptomic signatures. TGF-beta regulated genes such as matrix metalloproteinase-3 (Mmp3), cytochrome b-245 heavy chain (Cybb), lymphocyte antigen 6E (Ly6e), vascular cell adhesion molecule-1 (Vcam1) and the Integrin alpha-5 (Itga5) were induced in BLM mice and repressed by EHP-101 treatment. We also intersected differentially expressed genes in EHP-101-treated mice with dataset of human scleroderma intrinsic genes and found 53 overlapped genes, including the C-C motif chemokine 2 (Ccl2) and the interleukin 13 receptor subunit alpha 1 (IL-13Ra1) genes, which have been studied as biomarkers of SSc. Altogether the results indicate that this synthetic cannabinoid qualifies as a novel compound for the management and possible treatment of scleroderma and, potentially, other fibrotic diseases. Overall design: RNA-Seq profiles were generated for six- to eight-week-old female BALB/c mice in three conditions: Control, Bleomycin and Bleomycin + EHP-101 treatment (N=2).

Publication Title

EHP-101, an oral formulation of the cannabidiol aminoquinone VCE-004.8, alleviates bleomycin-induced skin and lung fibrosis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE94359
Gene expression profiling of CD45+ leukocytes infiltrating the prostate of TRAMP and TRAMP-J18-/- (iNKT cell-deficient) mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

To investigate the impact of the iNKT cells on the tumor-infiltrating leukocytes in TRAMP mouse prostate cancer.

Publication Title

Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE61267
Genome-wide Definition of Promoter and Enhancer Usage During Neural Induction of Human Embryonic Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Illumina Genome Analyzer IIx

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE61266
Genome-wide Definition of Promoter and Enhancer Usage During Neural Induction of Human Embryonic Stem Cells [gene expression profile]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a bivalent histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate.

Publication Title

Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP046749
Genome-wide Definition of Promoter and Enhancer Usage During Neural Induction of Human Embryonic Stem Cells [CAGE-seq]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Genome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate. Investiagtion of promoters usage changes during ESCs neural induction Overall design: ESCs and NESCs promoter usage profiling by CAGE-seq

Publication Title

Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61256
Obesity accelerates epigenetic aging of human liver
  • organism-icon Homo sapiens
  • sample-icon 133 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Obesity accelerates epigenetic aging of human liver.

Sample Metadata Fields

Sex, Age, Disease, Subject

View Samples
accession-icon GSE61260
Human liver gene expression data from subjects of varying ages
  • organism-icon Homo sapiens
  • sample-icon 133 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

N=134 human liver samples from morbidly obese patients and healthy controls were analysed by array-based mRNA expression profiling. Liver messenger RNA expression datasets from the German patients were generated on the HuGene 1.1 ST gene array The purpose of the study was to correlate these gene expression data with body mass index and with an epigenetic measure of age acceleration based on DNA methylation data.

Publication Title

Obesity accelerates epigenetic aging of human liver.

Sample Metadata Fields

Sex, Age, Disease, Subject

View Samples
accession-icon GSE50794
GEMM CRC collection analysis
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A collection of genetically engineered mouse models (GEMM) of colorectal cancer (CRC) were created, and primary tumors from these GEMMs were analyzed.

Publication Title

Cross-species analysis of genetically engineered mouse models of MAPK-driven colorectal cancer identifies hallmarks of the human disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29523
Expression data from human CD34+ HPC subpopulations transduced with nuclear-trapped AF1q/MLLT11 (A2M)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to examine the impact of AF1q/MLLT11 on the gene expression profile of CD34+CD45RA-Lin- and CD34+CD45RA+Lin- HPCs isolated from umbilical cord blood

Publication Title

AF1q/MLLT11 regulates the emergence of human prothymocytes through cooperative interaction with the Notch signaling pathway.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact