refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon SRP072454
Mapping interactions for the TNIP2 hub protein
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

This experiment analyzes the set of RNAs copurifying with the protein TNIP2 (amino acids 196-346) Overall design: HEK293 cells were transfected with constructs expressing either Halo tag (controls) or Halo-TNIP2 196-346. Total RNA was purified from an aliquot of the whole cell extract (Input samples). Halo-tagged proteins were purified from the remainder of the whole cell extract, and RNA subsequently purified from the Halo purified samples (Pulldown samples).

Publication Title

TNIP2 is a Hub Protein in the NF-κB Network with Both Protein and RNA Mediated Interactions.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE47725
Chronic Restraint Stress Upregulates Erythropoiesis Through Glucocorticoid Stimulation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce large numbers of young erythrocytes. Previous work demonstrates hematopoietic changes in rodents exposed to various physical and psychological stressors, however, the effects of chronic psychological stress on erythropoiesis has not be delineated. We employed laboratory, clinical and genomic analyses of a murine model of chronic restraint stress (RST) to examine the influence of psychological stress on erythropoiesis. Mice exposed to RST demonstrated markers of early erythroid expansion involving the glucocorticoid receptor. In addition, these RST-exposed mice had increased numbers of circulating reticulocytes and increased erythropoiesis in primary and secondary erythroid tissues. Mice also showed increases in erythroid progenitor populations and elevated expression of the erythroid transcription factor KLF1 in these cells. Together this work describes some of the first evidence of psychological stress affecting erythroid homeostasis through glucocorticoid stimulation and begins to define the transcription factor pathway involved.

Publication Title

Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE41889
Macrophage Microvesicles Induce Macrophage Differentiation and miR-223 Transfer
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microvesicles (MV) are small membrane-bound particles comprised of exosomes and various sized extracellular vesicles. These are released by a number of cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and whether they influenced the differentiation of nave monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including monocytes, endothelial cells, epithelial cells and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation.

Publication Title

Macrophage microvesicles induce macrophage differentiation and miR-223 transfer.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon E-ATMX-31
Transcription profiling of Arabidopsis shoots, roots and cell cultures
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Microarray analysis of the changes in transcript abundance in cell culture and shoot

Publication Title

Heterogeneity of the mitochondrial proteome for photosynthetic and non-photosynthetic Arabidopsis metabolism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-1766
Transcription profiling of rice over the first 24 hours of germination under aerobic conditions
  • organism-icon Oryza sativa
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Transcript abundance profiles were examined over the first 24 hours of germination in rice grown under aerobic conditions.

Publication Title

Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity.

Sample Metadata Fields

Specimen part, Time

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact