refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 738 results
Sort by

Filters

Technology

Platform

accession-icon GSE67796
Expression data from liver, PFC and amygdala of mice treated with PPAR agonists
  • organism-icon Mus musculus
  • sample-icon 112 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists have demonstrated therapeutic properties for several brain disorders, including alcohol dependence. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated and little is known about their effects in the brain. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar and fenofibrate decreased ethanol consumption in male C57BL/6J mice while bezafibrate did not. Hypothesizing that fenofibrate and tesaglitazar are causing brain gene expression changes that precipitate the reduction in ethanol drinking, we gave daily oral injections of fenofibrate, tesaglitazar and bezafibrate to mice for eight consecutive days and collected liver, prefrontal cortex and amygdala 24 hours after last injection. RNA was isolated and purified using MagMAX-96 Total RNA Isolation Kit. Biotinylated, amplified cRNA was generated using Illumina TotalPrep RNA Amplification Kit and hybridized to Illumina MouseWG-6 v2.0 Expression microarrays.

Publication Title

PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE89445
Expression data from D.melanogaster guts with a constitutively active Imd in the presence or absence of a microbiome
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Innate immune responses contributed to the containment of intestinal microbes.

Publication Title

Constitutive Immune Activity Promotes Tumorigenesis in Drosophila Intestinal Progenitor Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51730
Profiling the transcriptome: synaptoneurosomes capture the molecular effects of alcohol consumption
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Action of alcohol on synaptic mRNA in the amygdala of mice

Publication Title

The synaptoneurosome transcriptome: a model for profiling the emolecular effects of alcohol.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE12978
Microarray Analysis of the transcriptome of the Subfornical Organ in the rat
  • organism-icon Rattus norvegicus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

In these studies we have for the first time described the transcriptome of the rat SFO, and have in addition identified genes the expression of which is significantly modified by either water or food deprivation.

Publication Title

Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41342
Data from a time course study of gene expression in a mouse model of osteoarthritis
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The purpose of this study was to characterize the histologic development of OA in a mouse model where OA is induced by destabilization of the medial meniscus (DMM model) and to identify genes regulated during different stages of the disease, using RNA isolated from the joint organ and analyzed using microarrays.427 genes from the microarrays passed consistency and significance filters. There was an initial up-regulation at 2 and 4 weeks of genes involved in morphogenesis, differentiation, and development, including growth factor and matrix genes, as well as transcription factors including Atf2, Creb3l1, and Erg. Most genes were off or down-regulated at 8 weeks with the most highly down-regulated genes involved in cell division and the cytoskeleton. Gene expression increased at 16 weeks, in particular extracellular matrix genes including Prelp, Col3a1 and fibromodulin.The results support a phasic development of OA with early matrix remodelling and transcriptional activity followed by a more quiescent period that is not maintained.

Publication Title

Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE50379
Expression data from striatum of a mouse model of Huntingtons disease (HD) (HdhQ111/Q111) crossed with mGluR5 knockout mice (mGluR5-/-) and their respective controls (HdhQ20/Q20 and mGluR5+/+).
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To try to investigate the mechanism behind the adaptive phenotypes observed in a mice model model of HD crossed with mGluR5 knockout, we analyzed whether mutated huntingtin (Htt) expression in a mGluR5 null background could be altering the expression of genes that might be involved in the pattern of Htt aggregation and HD-related locomotor alterations.

Publication Title

Metabotropic glutamate receptor 5 knockout promotes motor and biochemical alterations in a mouse model of Huntington's disease.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP040664
Distinctive Profile of IsomiR Expression and Novel MicroRNAs in Rat Heart Left Ventricle
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzer

Description

MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486. Overall design: The hearts of 3 male 8 month old Sprague-Dawley rats were rapidly extracted after euthanasia with sodium pentobarbital. A section of the free wall of the left ventricle was dissected into epicardium, mid-myocardium and endocardium by cutting approximately 1 mm from the epicardial and endocardial surfaces. Small RNA was extracted (miRNeasy Kit; Qiagen, Crawley UK), quantified (Nanodrop; Thermo Scientific) and quality assessed for degradation (RNA Nano Chip, Bioanalyser 2100; Aligent Technologies, Wokingham UK; only samples with a RNA integrity no. (RIN) =8 were carried forward) and retention of small RNA (Small RNA Chip, Bioanalyser 2100). Small RNA was preferentially ligated with adapters, reverse transcribed into cDNA and amplified with 9 individually tagged primer indices (TruSeq Small RNA Sample Preparation Kit; Illumina, Little Chesterford, UK) and a library of small RNA created for each sample. After gel purification the cDNA products were again analysed on the bioanalyser using a High Sensitivity DNA Chip and assessed for the presence and concentration of the peak corresponding to ligated and tagged miRNA (approximately 147nt). Only samples with suitable RIN values exhibiting good retention of small RNA species were used for library preparation. After pooling, the samples were sequenced by TrinSeq (Trinity Genome Sequencing Lab & Neuropsychiatric Genetics Group, Trinity College Dublin, Ireland (http://www.medicine.tcd.ie/sequencing); using TruSeq SR Cluster Kit v5 (Illumina) and the resultant data trimmed and aligned to miRBase v18 (CLC Genomics Workbench v4.0; CLC bio, Swansea UK).

Publication Title

Distinctive profile of IsomiR expression and novel microRNAs in rat heart left ventricle.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36665
Gene expression profiling of Wwox targeted ablation in mouse mammary epithelial cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The WWOX gene has been implicated in human cancers, including breast cancer.The development and tumorigenesis between human and mouse mammary glands (MGs) share similar molecular details and signal transduction pathways. We established mouse line that specifically knockout the expression of WWOX gene in the MG epithelial cells (MECs) by crossing BK5-cre mice with our WWOX flox stain. In order to study the gene expression profile in the subpopulation MECs, we isolated the organoids from the 4th MGs of both BK5-cre +; WWOX flox/flox (KO) mice and their WT counterparts (BK5-cre -; WWOX flox/flox), 3 mice each genotype. The total RNA from the mouse MG organoids was extracted and purified by TRIzol/RNeasy Kit and their integrity was checked on Agilent RNA 6000 Nanochip.

Publication Title

Conditional Wwox deletion in mouse mammary gland by means of two Cre recombinase approaches.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE26660
The transcriptome of the medullary area postrema: The thirsty rat, the hungry rat and the hypertensive rat
  • organism-icon Rattus norvegicus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The area postrema (AP) is a sensory circumventricular organ characterised by extensive fenestrated vasculature and neurons which are capable of detecting circulating signals of osmotic, cardiovascular, immune and metabolic status. The AP can communicate these messages via efferent projections to brainstem and hypothalamic structures that are able to orchestrate an appropriate response. We have used microarrays to profile the transcriptome of the AP in the Sprague Dawley (SD) and Wistar Kyoto (WKY) rat and present here a comprehensive catalogue of gene expression, focussing specifically on the population of ion channels, receptors and G protein-coupled receptors (GPCRs) expressed in this sensory tissue; of the GPCRs expressed in the rat AP we identified ~36% that are orphans having no established ligand. We have also looked at the ways in which the AP transcriptome responds to the physiological stressors of 72-hours dehydration (DSD) and 48-hours fasting (FSD) and have performed microarrays under these conditions. Comparison between the DSD and SD or between FSD and SD revealed only a modest number of AP genes that are regulated by these homeostatic challenges. The expression levels of a much larger number of genes are altered in the spontaneously hypertensive rat (SHR) AP compared to the normotensive WKY controls however. Finally, analysis of these hypertension-related elements revealed genes that are involved in both the regulation of blood pressure and immune function and as such are excellent targets for further study.

Publication Title

The transcriptome of the medullary area postrema: the thirsty rat, the hungry rat and the hypertensive rat.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41932
Female Mice Lacking p47phox Have Altered Adipose Tissue Gene Expression and are Protected against High Fat-Induced Obesity and Metabolic Syndrome
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Oxidative stress in adipose tissue and liver has been linked to the development of obesity. NADPH oxidases (NOX) enzymes are a major source of reactive oxygen species (ROS). The current study was designed to determine if NOX2-generated ROS play a role in development of obesity and metabolic syndrome after high fat feeding. Wild type (WT) mice and mice lacking the cytosolic NOX2 activated protein p47phox (P47KO) were fed AIN-93G diets or high fat diets (HFD) containing 45% fat and 0.5% cholesterol for 13 weeks from weaning. Affymetrix array analysis revealed dramatically less expression of mRNA of genes linked to energy metabolism, adipocyte differentiation (PPAR, Runx2) and fatty acid uptake (CD36, lipoprotein lipase) in fat pads from female HFD-P47KO mice compared to HFD-WT females. These data suggest that NOX2 is an important regulator of metabolic homeostasis and that NOX2-associated ROS plays an important role in development of diet-induced obesity particularly in the female

Publication Title

Female mice lacking p47phox have altered adipose tissue gene expression and are protected against high fat-induced obesity.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact