refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 45 results
Sort by

Filters

Technology

Platform

accession-icon GSE61335
AKT pathway genes define 5 prognostic subgroups in glioblastoma
  • organism-icon Homo sapiens
  • sample-icon 124 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133B Array (hgu133b)

Description

GBM samples were clusered using gene expression of AKT pathway genes to reveal at least 5 GBM AKT subtypes, having distinct DNA copy number alterations, enrichment in oncogenes and tumor suppressor genes and patterns of expression for PI3K/AKT/mTOR signaling components.

Publication Title

AKT pathway genes define 5 prognostic subgroups in glioblastoma.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE4271
Molecular subclasses of high-grade glioma: prognosis, disease progression, and neurogenesis
  • organism-icon Homo sapiens
  • sample-icon 200 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Novel prognostic subclasses of high-grade astrocytoma are identified and discovered to resemble stages in neurogenesis. One tumor class displaying neuronal lineage markers shows longer survival, while two tumor classes enriched for neural stem cell markers display equally short survival. Poor prognosis subclasses exhibit either markers of proliferation or of angiogenesis and mesenchyme. Analysis of gene expression data is described in Phillips et al., Cancer Cell, 2006.

Publication Title

Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.

Sample Metadata Fields

Sex, Age, Disease stage

View Samples
accession-icon SRP149193
A subset of skin macrophages modulates surveillance and regeneration of local nerves
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 3000

Description

Host-environment interfaces such as the dermis comprise tissue macrophages as the most abundant resident immune cell type. Diverse tasks, i.e. to resist against invading pathogens, to attract bypassing immune cells from penetrating vessels and to aid tissue development and repair require a dynamic postnatal coordination of tissue macrophages specification. Here, we delineated the postnatal development of dermal macrophages and their differentiation into distinct subsets by adapting single cell transcriptomics, fate-mapping and tissue imaging. We thereby identified a small phenotypically and transcriptionally distinct subset of embryo-derived skin macrophages that was maintained and largely excluded from the overall postnatal exchange by monocytes. These macrophages specifically interacted with dermal sensory nerves, surveilled and trimmed the myelin sheets and regulated axon sprouting after mechanical injury. In summary, our data show long-lasting functional specification of macrophages in the dermis that is driven by step-wise adaptation to guiding structures and ensures codevelopment of ontogenetically distinct cells within the same compartment. Overall design: Single Cell Sequencing was performed on CD45+CD11b+CD64+Lin-(lineage B220, CD3, NK1.1, Siglec-F, Ly6G) CX3CR1 (low, mid, high) macrophage subsets from mouse dermis after enzymatic digestion

Publication Title

A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE34936
NOD genetic variation influences ab/gd lineage decisions when TCRa is prematurely expressed, but not the process of negative selection.
  • organism-icon Mus musculus
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Thymic negative selection is functional in NOD mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE34934
Expression data from BDC2.5 TCR Tg, preselected Rag-/-.B6 and Rag-/-.NOD.H2b thymocytes upon antigenic stimulation
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this study was to quantify the impact of NOD genetic vatiation on thymic negative selection transcriptional programs.

Publication Title

Thymic negative selection is functional in NOD mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE34935
Expression data from BDC2.5 TCR Tg thymocytes on B6g7 and NOD background
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this study was to quantify the impact of NOD genetic vatiation on the transcriptional programs induced by the alpha beta-TCR at the DN to DP transition in the BDC2.5 TCR Tg model

Publication Title

Thymic negative selection is functional in NOD mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE37535
PPAR is a major driver of the accumulation and phenotype of adipose-tissue Treg cells
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE37532
Gene expression profile of regulatory T cells (Tregs) isolated from visceral adipose tissue and lymph nodes of mice sufficient and deficient of Pparg expression in Tregs
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We identified Pparg as a major orchestrator of the phenotype of adipose-tissue resident regulatory T cells (VAT Tregs). To establish the role of Pparg in shaping the VAT Tregs gene profile and cell dynamics, Tregs from lymph nodes and visceral adipose tissue of mice sufficient and deficient of Pparg expression in Tregs were double sorted for microarray analysis.

Publication Title

PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE37533
Expression data of Pioglitazone- or vehicle-treated CD4+FoxP3- T cells transduced with Foxp3+/- Pparg1 (or Pparg2)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We identified Pparg as a major orchestrator of the phenotype of adipose-tissue resident regulatory T cells (VAT Tregs). To explore the contribution of Pparg1 and 2 in the generation of the VAT Tregs-specific gene signatures, CD4+FoxP3- T cells were transduced with Foxp3+/- Pparg1 (or Pparg2), treated with Pioglitazone or vehicle, and double sorted for microarray analysis.

Publication Title

PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE6813
Gene expression profiles of CD4+CD25+ Tregs from NOD and B6.H2g7 mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The NOD (nonobese diabetic) mouse strain develops a characteristic autoimmune syndrome that closely resembles human type I diabetes. It has been suggested that NOD mice exhibit both numerical deficiency in CD4+CD25+ regulatory T cells (Treg) and reduced suppressive activity. We compared sorted CD4+CD25+ Tregs from the spleens of 6-7 week-old female NOD and nondiabetic B6.H2g7 mice. Tregs were 932% and 951% Foxp3+ in NOD and B6.H2g7 cells, respectively, on post-sort reanalysis. "Conventional" CD4+CD25- T cells (Tconv) are included as reference populations. Surprisingly, Treg "signature" is similar between the two strains, with only a few probesets that subtly deviate.

Publication Title

The defect in T-cell regulation in NOD mice is an effect on the T-cell effectors.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact