refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon SRP092075
Generation of human microglia-like cells to study neurological disease
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Microglia play important roles in developmental and homeostatic brain function, and influence the establishment and progression of many neurological disorders. Here, we demonstrate that renewable human iPSCs can be efficiently differentiated to microglial-like cells (iMGL) to study neurological diseases, such as Alzheimer''s disease (AD). We find that iMGLs develop in vitro similarly to microglia in vivo and whole transcriptome analysis demonstrates that they are highly similar to adult and fetal human microglia. Functional assessment of iMGLs reveal that they secrete cytokines in response to inflammatory stimuli, migrate and undergo calcium transients, and robustly phagocytose CNS substrates. We also show novel use of iMGLs to examine the effects of fibrillar Aß and brain-derived tau oligomers on AD-related gene expression and to interrogate mechanisms involved in synaptic pruning. Taken together, these findings demonstrate that iMGLs can be used in high-throughput studies of microglial function, providing important new insight into human neurological disease. Overall design: Human cells were collected and analyzed for gene expression using RNA-seq.

Publication Title

iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE72927
Functional Subclone Profiling for Prediction of Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma [expression]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Purpose: Investigation of clonal heterogeneity may be key to understanding mechanisms of therapeutic failure in human cancer. However, little is known on the consequences of therapeutic intervention on the clonal composition of solid tumors.

Publication Title

Functional Subclone Profiling for Prediction of Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact