refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 414 results
Sort by

Filters

Technology

Platform

accession-icon GSE15203
Histone H2B K111A
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Total RNA from three replicate cultures of wild-type and mutant strains was isolated and the expression profiles were determined using Affymetrix arrays. Comparisons between the sample groups allow the identification of genes regulated by histone H2B K111A mutant.

Publication Title

Novel functional residues in the core domain of histone H2B regulate yeast gene expression and silencing and affect the response to DNA damage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15202
Histone H2B R102A
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Total RNA from three replicate cultures of wild-type and mutant strains was isolated and the expression profiles were determined using Affymetrix arrays. Comparisons between the sample groups allow the identification of genes regulated by histone H2B R102A mutant.

Publication Title

Novel functional residues in the core domain of histone H2B regulate yeast gene expression and silencing and affect the response to DNA damage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68159
Gene expression changes in a histone sprocket arginine mutant in histone H2A R78A
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Examined gene expression changes in a histone H2A R78A mutant in Saccharomyces cerevisiae relative to wild-type cells. THe overall goal of this study was to determine the functions of histone 'sprocket' arginine residues, which insert into the DNA minor groove in the nucleosome. We examined the roles of sprocket arginine mutants in gene expression, histone incorporation, and DNA repair.

Publication Title

Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041955
Homo sapiens Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The use of low quality RNA samples in whole-genome gene expression profiling remains controversial. It is unclear if transcript degradation in low quality RNA samples occurs uniformly, in which case the effects of degradation can be normalized, or whether different transcripts are degraded at different rates, potentially biasing measurements of expression levels. This concern has rendered the use of low quality RNA samples in whole-genome expression profiling problematic. Yet, low quality samples are at times the sole means of addressing specific questions – e.g., samples collected in the course of fieldwork.

Publication Title

RNA-seq: impact of RNA degradation on transcript quantification.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18260
Expression data for kidney progenitor tissue from rat embryo at E13
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

In this study we compared genes expressed in the unbudded portion of the Wolffian duct with the isolated ureteric bud to find genes novel to early kidney development. We used the Affymetrix Rat Genome 230 2.0 Array to compare the unbudded tissues with the budded samples.

Publication Title

Neuropeptide Y functions as a facilitator of GDNF-induced budding of the Wolffian duct.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65079
Genetic Variation, Not Cell Type of Origin, Underlies Regulatory Differences in iPSCs
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genetic Variation, Not Cell Type of Origin, Underlies the Majority of Identifiable Regulatory Differences in iPSCs.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE65035
Genetic Variation, Not Cell Type of Origin, Underlies Regulatory Differences in iPSCs [Expression]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of contribution of cell type of origin and individual to gene expression differences in iPSCs. The hypothesis tested in the present study was that cell type of origin affects iPSC gene expression. Results show that individual has a much stronger effect than cell type of origin on differences between iPSCs derived from multiple individuals.

Publication Title

Genetic Variation, Not Cell Type of Origin, Underlies the Majority of Identifiable Regulatory Differences in iPSCs.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE73815
Analysis of TCERG1 depletion by exon arrays
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery. To investigate TCERG1 function, we survey genome-wide changes in transcript and exon levels upon TCERG1 knockdown in HEK293T cells. Our data revealed that TCERG1 regulates different types of alternative spliced events, indicating a broad role in the regulation of alternative splicing.

Publication Title

Transcriptional Elongation Regulator 1 Affects Transcription and Splicing of Genes Associated with Cellular Morphology and Cytoskeleton Dynamics and Is Required for Neurite Outgrowth in Neuroblastoma Cells and Primary Neuronal Cultures.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP176451
Co-targeting RNA Polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis [RNA-seq]
  • organism-icon Arabidopsis thaliana
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA Polymerase V (Pol V) recruitment, targeted DNA methylation, and gene expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation, and enables new strategies for epigenetic gene regulation via targeted DNA methylation. Overall design: 40 RNA-seq

Publication Title

Co-targeting RNA Polymerases IV and V Promotes Efficient De Novo DNA Methylation in Arabidopsis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP028526
Stretch responsive miRNAs in human aortic valve interstitial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

miRNA-Sequencing was performed on human aortic valve interestitial cells (AVICs) exposed to 14% stretch at 1 hz or static conditions for 24h. Overall design: Six static control and six samples exposed to cyclic stretch 14% for 24h

Publication Title

The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact