refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 396 results
Sort by

Filters

Technology

Platform

accession-icon GSE48466
Expression data from well-differentiated human bronchial epithelial cells infected with H1N1 Influenza isolates
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to compare the gene expression profiles of different H1N1 isolates (seasonal and pandemic) in lung epithelial cells in vitro.

Publication Title

Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46600
Transcriptome and Molecular Pathways Analysis of CD4 T-Cells from Young NOD Mice
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Type 1 diabetes is a multigenic disease caused by T-cell mediated destruction of the insulin producing -cells. Although conventional (targeted) approaches of identifying causative genes have advanced our knowledge of this disease, many questions remain unanswered. Using a whole molecular systems study, we unraveled the genes/molecular pathways that are altered in CD4 T-cells from young NOD mice prior to insulitis (lymphocytic infiltration into the pancreas). Many of the CD4 T-cell altered genes lie within known diabetes susceptibility regions (Idd), including several genes in the diabetes resistance region Idd13 and two genes (Khdrbs1 and Ptp4a2) in the CD4 T-cell diabetogenic activity region Idd9/11. Alterations involved apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks), inflammation and cell signaling/activation (predominant at 3 weeks), and innate and adaptive immune responses (predominant at 4 weeks). We identified several factors that may regulate these abnormalities: IRF-1, HNF4A, TP53, BCL2L1 (lies within Idd13), IFNG, IL4, IL15, and prostaglandin E2, which were common to all 3 ages; AR and IL6 to 2 and 4 weeks; and Interferon (IFN-I) and IRF-7 to 3 and 4 weeks. Others were unique to the various ages (e. g. MYC, JUN, and APP to 2 weeks; TNF, TGFB1, NFKB, ERK, and p38MAPK to 3 weeks; and IL12 and STAT4 to 4 weeks). Our data suggest that diabetes resistance genes in Idd13 and Idd9/11, and BCL2L1, IL6-AR and IFNG-IRF-1-IFN-I/IRF-7-IL12 pathways play an important role in CD4 T-cells in the early pathogenesis of autoimmune diabetes. Thus, the alternative approach of investigation at the molecular systems level has captured new information, which combined with validation studies, offers the opportunity to test hypotheses on the role played by the genes/molecular pathways identified in this study, to understand better the mechanisms of autoimmune diabetes in CD4 T-cells, and to develop new therapeutic strategies for the disease.

Publication Title

Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE147387
SMAD1 promoter hypermethylation and lack of SMAD1 expression in Hodgkin Lymphoma
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Global gene expression analysis was performed of several cell lines, mostly classical Hodgkin lymphoma, one DLBCL cell line and one NLPHL cell line.

Publication Title

SMAD1 promoter hypermethylation and lack of SMAD1 expression in Hodgkin lymphoma: a potential target for hypomethylating drug therapy.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP050336
The RNA binding protein Arrest (Aret) regulates myofibril maturation in Drosophila flight muscle
  • organism-icon Drosophila melanogaster
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In Drosophila, fibrillar flight muscles (IFMs) enable flight, while tubular muscles mediate other body movements. Here, we use RNA-sequencing and isoform-specific reporters to show that spalt major (salm) determines fibrillar muscle physiology by regulating transcription and alternative splicing of a large set of sarcomeric proteins. We identify the RNA binding protein Arrest (Aret, Bruno) as downstream of salm. Aret shuttles between cytoplasm and nuclei, and is essential for myofibril maturation and sarcomere growth of IFMs. Molecularly, Aret regulates IFM-specific transcription and splicing of various sarcomeric targets, including Stretchin and wupA (TnI), and thus maintains muscle fiber integrity. As Aret and its sarcomeric targets are evolutionarily conserved, similar principles may regulate mammalian muscle morphogenesis. Overall design: 9 samples from Drosophila melanogaster were analyzed in duplicate: control dissected wildtype flight muscle at 30h APF, 72h APF and 0 day adult, jump muscle and whole leg from 1d adult and RNAi/mutant conditions for salm (1d flight muscle) and aret (30h, 72h and 1d flight muscle)

Publication Title

The RNA-binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE37450
Molecular Phenotyping of Immune Cells from Young NOD Mice
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse a model for human type 1 diabetes (T1DM). The molecular events leading to insulitis are poorly understood. Since TIDM is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease.

Publication Title

Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE32920
Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Staphylococcus aureus produces the cyclic dipeptides tyrvalin and phevalin (aureusimine A and B, respectively).

Publication Title

Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE97254
Patients Experiencing Statin-Induced Myalgia Exhibit a Unique Program of Skeletal Muscle Gene Expression Following Statin Re-challenge
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of patients taking statins experience muscle related adverse events. Myalgia, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels, is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin-associated myalgia are not clearly understood. To elucidate changes in gene expression associated with statin-induced myalgia, we compared profiles of gene expression in the biopsied skeletal muscle from statin-intolerant patients undergoing statin re-challenge versus those of statin-tolerant controls. A robust separation of statin-intolerant and statin-tolerant cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of statin intolerant patients, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals are genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario further bolstered by the discovery that a number of single nucleotide polymorphisms (e.g., SLCO1B1, SLCO2B1 and RYR2) associated with statin myopathy were observed with increased frequency among statin-intolerant study subjects.

Publication Title

Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE109304
Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 16.1.0, HsEx10stv2_Hs_REFSEQ (huex10st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE109302
Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 16.1.0, HsEx10stv2_Hs_REFSEQ (huex10st)

Description

mRNA expression profiling of untreated CDX samples and correlation with sensitivity data derived from treatments with BI 853520.

Publication Title

Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE60925
Access to follicular dendritic cells is a pivotal step in murine chronic lymphocytic leukemia B cell activation and proliferation
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

In human chronic lymphocytic leukemia (CLL) pathogenesis B cell antigen receptor signaling seems important for leukemia B cell ontogeny, whereas the microenvironment influences B cell activation, tumor cell lodging and provision of antigenic stimuli. Using the murine E-Tcl1 CLL model, we demonstrate that CXCR5-controlled access to follicular dendritic cells (FDCs) confers proliferative stimuli to leukemia B cells. Intravital imaging revealed a marginal zone B cell-like leukemia cell trafficking route. Murine and human CLL cells reciprocally stimulated resident mesenchymal stromal cells through lymphotoxin--receptor activation, resulting in CXCL13 secretion and stromal compartment remodeling. Inhibition of lymphotoxin/lymphotoxin--receptor signaling or of CXCR5 signaling retards leukemia progression. Thus, CXCR5 activity links tumor cell homing, shaping a survival niche, and access to localized proliferation stimuli.

Publication Title

Access to follicular dendritic cells is a pivotal step in murine chronic lymphocytic leukemia B-cell activation and proliferation.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact