refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 60 results
Sort by

Filters

Technology

Platform

accession-icon GSE9579
Gene Expression in Acute Appendicitis
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Gene expression was evaluated in 9 appendix samples removed from patients who went to the operating room with the diagnosis of acute appendicitis and 4 samples removed for non-inflammatory reasons.

Publication Title

Acute appendicitis is characterized by a uniform and highly selective pattern of inflammatory gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12038
XBP1 links ER stress to intestinal inflammation
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

XBP1 is the transcriptino factor that is activated by the ER stress. XBP1 is known to induce the ER dexpansion and increase the expression of the ER chaperone genes to prtect the cell from the ER stress. We generated a mouse strain that lacked XBP1 specifically in the mouse intestine by breeding the XBP1flox mice with Villin-cre mice. Here we examined genes that are differentially expressed between WT and XBP1 KO mouse intestine to identify genes that are downstream of XBP1.

Publication Title

XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-856
Transcription profiling by array of mice with liver-specific expression of hypoxia inducible factor, or inactivated von Hippel-Lindau tumor suppressor
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The effects of constitutively active Hypoxia Inducible Factor (HIF) and inactivated von Hippel-Lindau tumor suppressor gene product (pVHL) were examined in a mouse model. Conditionally expressed, constitutively active HIF-1a and HIF-2a were compared with inactivated pVHL.

Publication Title

Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77908
Expression data from U-937 cells exposed to nanosecond duration electrical pulses
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

It is unclear how nanosecond electrical pulses affect gene expression.

Publication Title

Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP).

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE77907
Expression data from Jurkat Clone E-6 cells exposed to nanosecond duration electrical pulses
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

It is unclear how nanosecond electrical pulses affect gene expression.

Publication Title

Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP).

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE52428
Host gene expression signatures of influenza A H1N1 and H3N2 virus infection in adults
  • organism-icon Homo sapiens
  • sample-icon 647 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Diagnosis of influenza A infection is currently based on clinical symptoms and pathogen detection. Use of host peripheral blood gene expression data to classify individuals with influenza A virus infection represents a novel approach to infection diagnosis

Publication Title

A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE33341
Gene Expression-Based Classifiers Identify Staphylococcus aureus Infection in Mice and Humans
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 321 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the hosts inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 95 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.82). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.94, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.

Publication Title

Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans.

Sample Metadata Fields

Race

View Samples
accession-icon GSE45050
Expression data from human hepatocellular carcinoma (HCC), Cirrhosis, and non-tumor liver tissues.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

There are significant differences in the expression of genes that regulate metabolic pathways in HCC as compared to Cirrhosis or non-tumor liver tissues. These charcteristic pathways can be exploited for metabolic imaging biomarkers of HCC.

Publication Title

The aspartate metabolism pathway is differentiable in human hepatocellular carcinoma: transcriptomics and (13) C-isotope based metabolomics.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE63990
Profiling of bacterial respiratory infection, viral respiratory infection, and non-infectious illness
  • organism-icon Homo sapiens
  • sample-icon 277 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

A pressing clinical challenge is identifying the etiologic basis of acute respiratory illness. Without reliable diagnostics, the uncertainty associated with this clinical entity leads to a significant, inappropriate use of antibacterials. Use of host peripheral blood gene expression data to classify individuals with bacterial infection, viral infection, or non-infection represents a complementary diagnostic approach.

Publication Title

Host gene expression classifiers diagnose acute respiratory illness etiology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP186683
Transcriptome analysis of various TOX+ and TOX- tumor-infiltrating CD8 T cells and in vitro TOX over-expressing T cells.
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

TOX is selectively expressed in tumor-infiltrating CD8 T cells however the role of TOX in peripheral CD8 T cells is not known. The two goals of this study are to elucidate transcriptional changes between TOX-sufficient and TOX-deficient tumor infiltrating CD8 T cells and to elucidate the molecular program induced by TOX overexpression in peripheral CD8 T cells. Overall design: CD8 T cells were sorted by flow cytometry and RNA-seq was performed.

Publication Title

TOX is a critical regulator of tumour-specific T cell differentiation.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact