refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Technology

Platform

accession-icon SRP147921
Insights into the Biology of Hearing and Deafness Revealed by Single-Cell RNA Sequencing
  • organism-icon Mus musculus
  • sample-icon 127 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 4000, MinION

Description

The goal of this study was to isolate individual cochlear hair cells and supporting cells from wild type animals in order to characterize the transcriptome of functionally mature auditory hair cells in the mammalian cochlea. Overall design: Single-cell RNA sequencing is a powerful tool by which to characterize the transcriptional profile of low-abundance cell types, however its application to the inner ear has been hampered by the bony labyrinth, tissue sparsity and difficulties in dissociating the ultra-rare cells of the membranous cochlea.  Herein, we present a method to isolate individual inner hair cells (IHCs), outer hair cells (OHCs) and Deiters' cells (DCs) from the murine cochlea at any post-natal time point. We isolated of 132 single cells from OHC, IHC, and DC cell types at postnatal day 15 (p15) and performed RNA-Sequencing of these cells using smartseq2 and Illumina HiSeq. An additional 12 single OHCs from the same timepoint were isolated and sequenced using smartseq2 and the Nanopore MinION 1D reads. We leverage single-cell RNA sequencing to analyze these three cell types and generate a multidimensional overview of their transcriptomes. The data provide new insights into OHC motility and the architecture of gene products implicated in hereditary hearing loss. This refined view of transcription in the organ of Corti will enhance to our understanding of the biology of hearing and deafness.

Publication Title

Insights into the Biology of Hearing and Deafness Revealed by Single-Cell RNA Sequencing.

Sample Metadata Fields

Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact