refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 394 results
Sort by

Filters

Technology

Platform

accession-icon GSE38494
Expression data from odontogenic tumours
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of the study was to elucidate the cellular origin of ameloblastoma and keratocystic odontogenic tumour, neoplasms believed to arise from dental epithelial cells, by carrying out a genome-wide expression analysis.

Publication Title

Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24450
183 breast tumors from the Helsinki Univerisity Central Hospital with survival information
  • organism-icon Homo sapiens
  • sample-icon 183 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

183 breast tumors from the Helsinki Univerisity Central Hospital with survival information

Publication Title

Variants on the promoter region of PTEN affect breast cancer progression and patient survival.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11891
Expression data from mouse aorta-gonad-mesonephros(AGM) derived stromal cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

A mouse AGM-derived cell line, AGM-s3, was shown to support the development of hematopoietic stem cells. To elucidate the molecular mechanisms regulating early hematopoiesis, we obtained subclones from AGM-s3, some of which were hematopoiesis supportive (s3-A9) and others which were non-supportive (s3-A7), and we analyzed the gene expression profiles by gene chip analysis.

Publication Title

Expression profile analysis of aorta-gonad-mesonephros region-derived stromal cells reveals genes that regulate hematopoiesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36323
Microarray analysis of human monocytic THP-1 cell treated with 1,25-dihydroxyvitamin D3 or Trichostatin A and the combination of both
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The nuclear hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates its target genes via activation of the transcription factor vitamin D receptor (VDR) far more specifically than the chromatin modifier trichostatin A (TsA) via its inhibitory action on histone deacetylases. We selected the thrombomodulin gene locus with its complex pattern of three 1,25(OH)2D3 target genes, five VDR binding sites and multiple histone acetylation and open chromatin regions as an example to investigate together with a number of reference genes, the primary transcriptional responses to 1,25(OH)2D3 and TsA. Transcriptome-wide, 18.4% of all expressed genes are either up- or down-regulated already after a 90 min TsA treatment; their response pattern to 1,25(OH)2D3 and TsA sorts them into at least six classes. TsA stimulates a far higher number of genes than 1,25(OH)2D3 and dominates the outcome of combined treatments. However, 200 TsA target genes can be modulated by 1,25(OH)2D3 and more than 1000 genes respond only when treated with both compounds. The genomic view on the genes suggests that the degree of acetylation at transcription start sites and VDR binding regions may determine the effect of TsA on mRNA expression and its interference with 1,25(OH)2D3. Our findings may have implications on dual therapies using chromatin modifiers and nuclear receptor ligands.

Publication Title

Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE54202
SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE54137
Genome-wide analysis of androgen receptor (AR) SUMOylation effects on gene expression (HEK293).
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Androgen receptor (AR) plays an important regulatory role during prostate cancer development. ARs transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications. To study the role of the AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer and HEK293 cell lines stably expressing wild-type (wt) or SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. In line with these data, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation modulates the chromatin occupancy of AR on many loci in a fashion that parallels with their differential androgen-regulated expression. De novo motif analyses show that other transcription factor-binding motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates ARs interaction with the chromatin and the receptors target gene selection.

Publication Title

SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE112617
Transcriptomic and epigenetic signatures of hepatocellular carcinoma and intrahepatic cholangiocarcinoma derived from oncogenically transformed murine hepatocytes
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Necroptosis microenvironment directs lineage commitment in liver cancer.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE112616
Transcriptomic signature of hepatocellular carcinoma and intrahepatic cholangiocarcinoma derived from oncogenically transformed murine hepatocytes after stable knock-down of Tbx3 or Prdm5
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Primary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and therapy response. Yet, molecular actors and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here, we report that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumourigenesis. While a necroptosis associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes harbouring identical oncogenic drivers give rise to HCC if surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of murine HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage commitment factors, a function conserved in humans. Together, our study provides unprecedented insights into lineage commitment in liver tumourigenesis and explains molecularly why common liver damaging risk factors can either lead to HCC or ICC.

Publication Title

Necroptosis microenvironment directs lineage commitment in liver cancer.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE112615
Transcriptomic signature of hepatocellular carcinoma and intrahepatic cholangiocarcinoma derived from oncogenically transformed murine hepatocytes
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Primary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and therapy response. Yet, molecular actors and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here, we report that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumourigenesis. While a necroptosis associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes harbouring identical oncogenic drivers give rise to HCC if surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of murine HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage commitment factors, a function conserved in humans. Together, our study provides unprecedented insights into lineage commitment in liver tumourigenesis and explains molecularly why common liver damaging risk factors can either lead to HCC or ICC.

Publication Title

Necroptosis microenvironment directs lineage commitment in liver cancer.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE46667
Lymphotoxin-beta receptor activation in HBV-infected HepaRG cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The objective of this experiment was to test the effect, at a transcrptomic level, of lymphotoxin-beta receptor activation in HBV-infected differentiated HepaRG cells

Publication Title

Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact