refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE116786
MicroRNA-382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Proper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the present study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR-382-5p and identified pathways affected by its silencing using microarrays, investigated protein expression and studied cellular respiration. Silencing of miRNA-382-5p significantly increased the expression of several genes involved in mitochondrial dynamics and -biogenesis. Microarray analysis of C2C12 myotubes silenced for miRNA-382-5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35-fold, p<0.01) and an induction of HSP60 protein (1.31-fold, p<0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR-382-5p reduced basal oxygen consumption rate by 14% (p<0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR-382-5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity.

Publication Title

MicroRNA-382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE67297
Cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus.
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Background: The prevalence of type 2 diabetes has increased dramatically in recent decades. Increasing brown adipose tissue (BAT) mass and activity has recently emerged as an interesting approach to not only increase energy expenditure, but also improve glucose homeostasis. BAT can be recruited by prolonged cold exposure in lean, healthy humans. Here, we tested whether cold acclimation could have therapeutic value for patients with type 2 diabetes by improving insulin sensitivity. Methods: Eight type 2 diabetic patients (age 59.35.8 years, BMI 29.83.2 kg/m2) followed a cold acclimation protocol, consisting of intermittent cold exposure (6 hours/day, 14-14.5 C) for 12 consecutive days. Before and after cold acclimation, cold-induced BAT activity was assessed by [18F]FDG-PET/CT scanning, insulin sensitivity at thermoneutrality by a hyperinsulinemic-euglycemic clamp, and muscle and WAT biopsies were taken. Results: Cold-induced BAT activity was low, but increased in all patients upon cold acclimation (SUV from 0.400.29 to 0.630.78, p<0.05). Interestingly, insulin sensitivity showed a very pronounced 40% increase upon cold acclimation (glucose rate of disappearance from 14.94.1 to 20.56.9 mol kg-1 min-1, p<0.05). A 40% increase in insulin sensitivity cannot be explained by BAT glucose uptake, in fact basal skeletal muscle GLUT4 content and translocation was markedly increased after cold acclimation, without effects on insulin signaling or AMPk activation. Conclusions: Regular mild cold exposure has marked effects on insulin sensitivity, which are accompanied by small increases in BAT activity and more pronounced effects on skeletal muscle. These data suggest a novel therapeutic option for the treatment of type 2 diabetes.

Publication Title

Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE87397
The role of dihydropyridines on murine microglial cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Effects of treatment with Nimodipine on N9 cells

Publication Title

Nimodipine fosters remyelination in a mouse model of multiple sclerosis and induces microglia-specific apoptosis.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE24687
C-peptide regulates early transcription in rat proximal tubular cells
  • organism-icon Rattus norvegicus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

C-peptide exerts beneficial effects on glomerular hyperfiltration in type I diabetic patients. As C-peptide localizes to the nucleus, we investigated the transcriptional activities of C-peptide in proximal tubular cells isolated from diabetic rats.

Publication Title

Early transcriptional regulation by C-peptide in freshly isolated rat proximal tubular cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18574
Allergen-challenged CD4+ cells from patients with seasonal allergic rhinitis
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

Seasonal allergic rhinitis (SAR) is a complex disease that is caused by many interacting genes and environmental factors. It is also an excellent model disease for clinical studies; it is common, it is seasonal, and since it takes place in the nasal cavity it can be studied in vivo non-invasively. Furthermore, the key disease cell, the Th2 cell is known. We study SAR using allergen-challenged CD4+ cells from allergic patients.

Publication Title

Highly interconnected genes in disease-specific networks are enriched for disease-associated polymorphisms.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE76896
Affymetrix profiling of IMIDIA biobank samples from organ donors and partially pancreatectomized patients
  • organism-icon Homo sapiens
  • sample-icon 200 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.

Sample Metadata Fields

Age

View Samples
accession-icon GSE76894
Affymetrix profiling of IMIDIA biobank samples from organ donors and partially pancreatectomized patients [organ donor cohort]
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pancreatic islet beta cell failure causes type 2 diabetes (T2D). The IMIDIA consortium has used a strategy entailing a stringent comparative transcriptomics analysis of islets isolated enzymatically or by laser microdissection from two large cohorts of non-diabetic (ND) and T2D organ donors (OD) or partially pancreatectomized patients (PPP). This work led to the identification of a signature of genes that were differentially expressed between T2D and ND regardless of the sample type (OD or PPP). This signature includes 19 genes, of which 9 have never been previously reported to be differentially expressed in T2D islets. The PPP cohort also includes samples from individuals with impaired glucose tolerance (IGT) or recent onset diabetes associated with a pancreatic exocrine disorder (T3cD). Notably, none of the 19 signature genes of T2D islets were significantly dysregulated in islets of subjects with IGT or T3cD, suggesting that their changed expression reflects beta cell deterioration rather than a deficit preceding it.

Publication Title

Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.

Sample Metadata Fields

Age

View Samples
accession-icon GSE76895
Affymetrix profiling of IMIDIA biobank samples from organ donors and partially pancreatectomized patients [partially pancreatectomized patient cohort]
  • organism-icon Homo sapiens
  • sample-icon 101 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pancreatic islet beta cell failure causes type 2 diabetes (T2D). The IMIDIA consortium has used a strategy entailing a stringent comparative transcriptomics analysis of islets isolated enzymatically or by laser microdissection from two large cohorts of non-diabetic (ND) and T2D organ donors (OD) or partially pancreatectomized patients (PPP). This work led to the identification of a signature of genes that were differentially expressed between T2D and ND regardless of the sample type (OD or PPP). This signature includes 19 genes, of which 9 have never been previously reported to be differentially expressed in T2D islets. The PPP cohort also includes samples from individuals with impaired glucose tolerance (IGT) or recent onset diabetes associated with a pancreatic exocrine disorder (T3cD). Notably, none of the 19 signature genes of T2D islets were significantly dysregulated in islets of subjects with IGT or T3cD, suggesting that their changed expression reflects beta cell deterioration rather than a deficit preceding it.

Publication Title

Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.

Sample Metadata Fields

Age

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact