refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 85 results
Sort by

Filters

Technology

Platform

accession-icon GSE27648
Expression profile of Maize (Zea mays L.) Embryonic Axes During Germination: Regulation of Ribosomal Protein mRNAs.
  • organism-icon Zea mays
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

Seed germination is a critical developmental process in plant propagation. Knowledge of the gene expression patterns in this critical process is important in order to understand the main biochemical reactions involved in successful germination, specially for economically relevant plants such as Maize.

Publication Title

Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon SRP101670
Ablation of the stress protease OMA1 protects against heart failure
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Heart failure (HF) is a major health and economic burden in developed countries. It has been proposed that the pathogenesis of HF may involve the action of mitochondria. Here we evaluate three different models of HF: tachycardiomyopathy, HF with preserved left ventricular (LV) ejection fraction, and LV myocardial ischemia and hypertrophy. Regardless of whether LVEF is preserved or reduced, our results indicate that the three models share common molecular features: an increase in mitochondrial ROS, followed by ultrastructural alterations in the mitochondrial cristae and loss of mitochondrial integrity that lead to cardiomyocyte death. We show that the ablation of the mitochondrial protease OMA1 averts cardiomyocyte death in all three experimental HF models, and thus, plays a direct role in cardiomyocyte protection. This finding identifies OMA1 as a potential target for preventing the progression of myocardial damage in HF associated to a variety of etiologies. Overall design: Transcriptome analysis of 12-week-old wild type mice versus OMA1 KO mice under control (non-treated) or treated with Isoproterenol chronically (implanted minipumps) for 7 days in heart tissue. The nuclear genetic background for both genotypes is C57BL/6JOlaHsd.

Publication Title

Ablation of the stress protease OMA1 protects against heart failure in mice.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Subject

View Samples
accession-icon GSE33941
Survival transcriptome in coenzyme Q deficiency syndrome
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Subject

View Samples
accession-icon GSE33769
Common gene expression profile in the mitochondrial syndrome of coenzyme Q deficiency
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Coenzyme Q10 deficiency syndrome includes a clinically heterogeneous group of mitochondrial diseases characterized by low content of CoQ10 in tissues. The only currently available treatment is supplementation with CoQ10, which improves the clinical phenotype in some patients but does not reverse established damage. We analyzed the transcriptome profiles of fibroblasts from different patients irrespective of the genetic origin of the disease. These cells showed a survival genetic profile apt at maintaining growth and undifferentiated phenotype, promoting anti-apoptotic pathways, and favoring bioenergetics supported by glycolysis and low lipid metabolism. WE conclude that the mitochondrial dysfunction caused byCoQ10 deficiency induces a stable survival adaptation of somatic cells from patients.

Publication Title

Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE33940
Gene expression in the mitochondrial syndrome of coenzyme Q deficiency
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Coenzyme Q10 deficiency syndrome includes a clinically heterogeneous group of mitochondrial diseases characterized by low content of CoQ10 in tissues. The only currently available treatment is supplementation with CoQ10, which improves the clinical phenotype in some patients but does not reverse established damage.

Publication Title

Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies.

Sample Metadata Fields

Sex, Age, Treatment, Subject

View Samples
accession-icon SRP044736
Deficiency in glucose transporter 12 results in heart failure and a diabetic phenotype in zebrafish
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Cardiomyopathies-associated metabolic pathologies (e.g. T2D and insulin resistance) are a leading cause of mortality. It is known that the association between the pathologies works in both directions, where heart failure can lead to metabolic derangements such as insulin resistance. This intricate crosstalk exemplifies the importance of a fine coordination between one of the most energy demanding organs and an equilibrated carbohydrate metabolism. In this light, to assist in the understanding of the role of insulin regulated glucose transporters and the development of cardiomyopathies, we set out to study GLUT12. GLUT12 is a novel insulin regulated GLUT expressed in the main insulin sensitive tissues such as cardiac and skeletal muscle and adipose tissue. This study investigates the role of GLUT12 in heart failure and diabetes by developing a model for glut12 deficiency in zebrafish. Overall design: 6 samples in total were analyzed. 3 replicates from control samples (injected with contol MO) and 3 replicates from glut12 morphant samples (injected with glut12 splice MO). In each sample 10 embryos were pooled.

Publication Title

GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP060292
The LSM1-7 Complex Differentially Regulates Arabidopsis Tolerance to Abiotic Stress Conditions by Promoting Selective mRNA Decapping
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000

Description

We report the role of LSM1-7 complex in the Arabidopsis tolerance to abiotic stresses. LSM1-7 controls gene expression reprogramming at the post-transcriptional level by promoting the decapping of mRNA. This function is selectively achieve over selected stress-induced transcripts depending on stress nature. Overall design: Comparison of transcriptomes from Col-0 and lsm1a lsm1b plants exposed to low temperatures, drought or high salt conditions

Publication Title

The LSM1-7 Complex Differentially Regulates Arabidopsis Tolerance to Abiotic Stress Conditions by Promoting Selective mRNA Decapping.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP153100
SmE1 is a functional subunit of the Arabidopsis Sm-ring that controls plant development and response to cold stress
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report the role of SmE1 protein in the control of Arabidopsis development and tolerance to abiotic stresses. SmE1 controls gene expression reprogramming at the post-transcriptional level by promoting the splicing of pre-mRNA. This function is selectively achieve over selected transcripts depending on the stimulus nature. Overall design: Transcriptomic profiling through RNAseq of Col-0 and sme1-1 plants under control conditions or exposed to low temperatures (4ºC, 24h)

Publication Title

Arabidopsis SME1 Regulates Plant Development and Response to Abiotic Stress by Determining Spliceosome Activity Specificity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE134614
Expression data from betalains treated C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconAffymetrix C. elegans Gene 1.1 ST Array

Description

Effects of betalains in C. elegans gene expression is studied, as our previous results showed a lifespan extension effect produced by theses molecules

Publication Title

Betalain health-promoting effects after ingestion in Caenorhabditis elegans are mediated by DAF-16/FOXO and SKN-1/Nrf2 transcription factors.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE20935
Gene expression in NKR-P1B+ versus Ly49s3+ rat NK cells
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Two major subsets of rat natural killer (NK) cells can be distinguished based on their expression of either the Ly49s3 or the NKR-P1B lectin-like receptor. Ly49s3+ NK cells, but not NKR-P1B+ NK cells, express a wide range of Ly49 receptors.

Publication Title

Two complementary rat NK cell subsets, Ly49s3+ and NKR-P1B+, differ in phenotypic characteristics and responsiveness to cytokines.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact