refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 323 results
Sort by

Filters

Technology

Platform

accession-icon SRP137808
Kinetic analysis of TGFbeta-induced EMT in NMuMG/E9 cells
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To investigate the transcriptional remodelling during EMT, we treated normal murine mammary gland epithelial cells with TGFbeta for 0, 2h, 6h, 12h, 24h, 36h, 48h, 60h, 72h, 96h, 168h and 240h. Using WGCNA and pathway enrichment analysis we identified multiple gene expression modules that were enriched in general, signaling, metabolic or stuctural pathways highly relevant for EMT. Overall design: RNA sequencing of NMuMG/E9 cells induced to undergo EMT by treatment with TGFbeta from 0-10 days.

Publication Title

PyMT-1099, a versatile murine cell model for EMT in breast cancer.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP082708
miR-1199-5p and Zeb1: a novel double-negative feedback coordinating EMT and tumour cell invasion (mRNA-seq)
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We investigated the effect of miR-1199-5p, miR-200b-3p and miR-429-3p on gene expression profiles during TGFbeta-induced EMT in normal murine mammary gland cells by using the mRNA-sequencing. Our analysis demonstrates that miR-1199-5p and both miR-200 family members share only 6 target genes, indicating that besides regulating Zeb1 expression they exert distinct functions during EMT. Overall design: mRNA profiles of NMuMG cells transiently overexpressing miR-1199-5p, miR-200b-3p or miR-429-3p and treated with TGFbeta for 4 days

Publication Title

miR-1199-5p and Zeb1 function in a double-negative feedback loop potentially coordinating EMT and tumour metastasis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP092615
Time course of mesenchymal breast cancer cells (MT?ECad) undergoing transdifferentiation into terminally differentiated adipocytes
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

A high degree of cell plasticity seems to promote malignant tumour progression, and an epithelial-mesenchymal transition (EMT) is suspected to provide cancer cells with increased cell plasticity for the development of metastasis and therapy resistance. Here, we have tested whether the EMT-induced cancer cell plasticity can be therapeutically exploited and we report the efficient conversion of breast cancer cells, which have undergone an EMT, into post-mitotic adipocytes. Delineation of the molecular pathways underlying such transdifferentiation has motivated a combination therapy with a MEK inhibitor and Rosiglitazone to demonstrate the conversion of invasive cancer cells into adipocytes and the repression of primary tumor invasion and metastasis formation in mouse models of breast cancer. The results indicate the high potential to utilize the increased cell plasticity of invasive cancer cells for differentiation therapy and they raise the possibility to employ pharmacological treatments to interfere with tumor invasion and metastasis. Overall design: Mesenchymal breast cancer cells (MT?ECad) were harvested at six different time-points during trasndifferentiation into terminally differentiated adipocytes (two biological replicates per time-point)

Publication Title

Gain Fat-Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon SRP158054
Py2T long term cells and mesenchymal breast cancer cells (MT?ECad) treated with different inhibitors
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cancer cell plasticity facilitates the development of therapy resistance and malignant progression. De-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate that cancer cell plasticity can be exploited therapeutically by forcing the trans-differentiation of EMT-derived breast cancer cells into post-mitotic and functional adipocytes. Delineation of the molecular pathways underlying such trans-differentiation has motivated a combination therapy with a MEK inhibitor and the anti-diabetic drug Rosiglitazone in various mouse models of murine and human breast cancer in vivo. This combination therapy provokes the conversion of invasive and disseminating cancer cells into post-mitotic adipocytes leading to the repression of primary tumor invasion and metastasis formation Overall design: Py2T long term cells and mesenchymal breast cancer cells (MT?ECad) were harvested at day7 and treated with different inhibitors (two biological replicates per time-point)

Publication Title

Gain Fat-Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE66638
Gene expression data of diagnostic childhood T-ALL samples and human thymocytes
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Lymphotoxin-mediated activation of the lymphotoxin- receptor (LTR) has been implicated in several physiological and pathological processes, including lymphoid organ development, T-cell maturation, and solid and hematopoietic malignancies. Its role in T-cell acute lymphoblastic leukemia (T-ALL) or other T-cell malignancies has remained however to be investigated. Here we show that the genes encoding lymphotoxin (LT)- and LT were expressed in T-ALL patient samples, more abundantly in the TAL/LMO molecular subtype, and in the TEL-JAK2 mouse model of cortical/mature T-ALL. Surface LT12 protein was detected in primary mouse T-ALL cells, but only upon phorbol ester stimulation or absence of microenvironmental LTR interaction. Indeed, in contrast to leukemic cells collected from transplanted Ltbr/ mice or from co-cultures with Ltbr/ mouse embryonic fibroblasts (MEF), those collected from Ltbr+/+ mice or from Ltbr+/+ MEF co-cultures presented no surface LT expression. Supporting the notion that LT signaling plays a role in T-ALL, inactivation of the Ltbr gene in mice resulted in a statistically significant delay in TEL-JAK2-induced leukemia onset. Expression of the Lta and Ltb genes was found to be increased at the early asymtptomatic stages of TEL-JAK2 T-ALL, when only low proportions of malignant thymocytes are present in normal sized thymus. Interestingly, young asymptomatic TEL-JAK2;Ltbr/ mice presented significantly less leukemic thymocytes than TEL-JAK2;Ltbr+/+ mice. Together, these data indicate that early lymphotoxin expression by T-ALL cells activates LTR signaling in thymic stromal cells, thus promoting leukemogenesis.

Publication Title

Lymphotoxin-β receptor in microenvironmental cells promotes the development of T-cell acute lymphoblastic leukaemia with cortical/mature immunophenotype.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE65115
Expression data from human primary cumulus cells culture (hCC)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The cumulus cells niche that surrounds the oocyte is essential for its maturation and presumably for the oocyte to acquire its competence to confer pluripotency. The cells cultured from the human oocyte cumulus niche (hCC) could be used as feeders for the propagation of human pluripotent stem cells in vitro.

Publication Title

Cultured Cells from the Human Oocyte Cumulus Niche Are Efficient Feeders to Propagate Pluripotent Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12508
Transcription patterns during wheat development
  • organism-icon Triticum aestivum
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

The analysis of gene expression during wheat development:

Publication Title

Comparative transcriptomics in the Triticeae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE140746
Fractionated ionizing radiation evokes diverse patterns of long-term changes in gene expression and tumor-propagating capacity in human glioma stem cells.
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This study addresses long-term effects of clinically relevant regimens of radiation in human glioma stem cells. Our investigations reveal a strikingly diverse spectrum of changes in cell behavior, gene expression patterns and tumor-propagating capacities evoked by radiation in different types of glioma stem cells. Evidence is provided that degree of cellular plasticity but not the propensity to self-renew is an important factor influencing radiation-induced changes in the tumor-propagating capacity of glioma stem cells. Gene expression analyses indicate that paralell transcriptomic responses to radiation underlie similarity of clinically relevant cellular outcomes such as the ability to promote tumor growth after radiation. Our findings underscore the importance of longitudinal characterizations of molecular and cellular responses evoked by cytotoxic treatrments in glioma stem cells.

Publication Title

Diversity of Clinically Relevant Outcomes Resulting from Hypofractionated Radiation in Human Glioma Stem Cells Mirrors Distinct Patterns of Transcriptomic Changes.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP070670
FOXF1 inhibits endothelial barrier function in the lung and transcriptionally activates the gene for the S1PR1 receptor
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Multiple signaling pathways, structural proteins and transcription factors are involved in regulation of endothelial barrier function. The Forkhead protein FOXF1 is a key transcriptional regulator of lung embryonic development, and we use a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis and lung injury and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1 caused lung inflammation and edema, leading to respiratory insuffency and uniform mortality. Deletion of a single foxf1 allele was sufficient to increase susceptibility of heterozygous mice to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells of FOXF1 deletion indicated reduced expression for genes critical for maintance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, increased lung endothelial permeability, and the abundance of mRNA and protein for sphingosine 1 phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assay demonstrated that FOXF1 directly bound to and induced the tanscriptional activity of the S1pr1 promoter. Pharmacological administratiion of S1P to injured pdgfb-iCreER/Foxf1 mice restored endothelial barrier function, decreased lung edema and improved survival. Thus, FOXF1 promotes normal lung homeostasis and lung repair, at least in part, by enhancing endothelial barrier function through transcriptional activation of the S1P/S1PR1/ signaling pathway. Overall design: RNA was isolated and pooled from the lungs of multiple mice with either the Foxf1 floxed alleles alone or Pdgfb-iCreER Foxf1 floxed mice.

Publication Title

FOXF1 maintains endothelial barrier function and prevents edema after lung injury.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE49248
KrasG12D partially compensates for the loss of beta-catenin in MLL-AF9 AML
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in MLL-AF9 AML.

Publication Title

KRas(G12D)-evoked leukemogenesis does not require β-catenin.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact