refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 500 results
Sort by

Filters

Technology

Platform

accession-icon GSE93370
Comparison of wild type mouse colon carcinoma cancer cell lines to transfected cell lines with Kras sh RNA
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We compared different mouse cancer cell lines to identify their unique cell signatures.

Publication Title

Myeloid-derived interleukin-1β drives oncogenic KRAS-NF-κΒ addiction in malignant pleural effusion.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE74309
Comparison of wild type mouse lung cancer cell lines to transfected cell lines with Nras sh RNA
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We compared different mouse cancer cell lines to identify their unique cell signatures.

Publication Title

<i>NRAS</i> destines tumor cells to the lungs.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58187
Comparison of mouse cancer cell line global gene expression [MG1]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We compared different mouse cancer cell lines to identify their unique cell signatures.

Publication Title

Mutant KRAS promotes malignant pleural effusion formation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58188
Comparison of mouse cancer cell line global gene expression [MG2]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We compared different mouse cancer cell lines to identify their unique cell signatures.

Publication Title

Mutant KRAS promotes malignant pleural effusion formation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE85021
Transcriptomic comparison of mouse Epithelial Trachea Cells
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We isolated mouse epithelial trachea cells from FVB mice in order to identify their transcriptomic signature.

Publication Title

Mutant KRAS promotes malignant pleural effusion formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58190
Tumor-mast cell transcriptional interactions in malignant pleural effusion
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mast cells mediate malignant pleural effusion formation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58189
Gene expression profiling of mouse mast cells exposed to different cancer cell supernatants
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Nave mast cells were cultured from murine bone marrow using incubation with IL-3 alone (samples 1-4) or IL-3 and KITL (samples 5-8).

Publication Title

Mast cells mediate malignant pleural effusion formation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6850
A dominant negative form of cJun affects genes that have opposing effects on lipid homeostasis in mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

cJun is a transcription factor activated by phosphorylation by SAPK/JNK MAP kinase pathway that has been linked to atherosclerosis. Adenovirus mediated gene transfer of a dominant negative form of cJun in C57BL/6 mice increased greatly the apolipoprotein E (ApoE) mRNA and plasma apoE levels and induced dyslipidmia, characterized by increased plasma cholesterol, triglyceride and VLDL levels and accumulation of discoidal HDL particles. Unexpectedly, infection of ApoE-/- mice with adenovirus expressing dn-cJun reduced by 50% plasma cholesterol, suggesting that the dn-cJun affected other genes that control plamsa cholesterol. To determine the molecular pathways implicated in this process we performed whole genome expression profiling using total RNA from the liver of infected ApoE-/- mice.

Publication Title

A dominant negative form of the transcription factor c-Jun affects genes that have opposing effects on lipid homeostasis in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE139601
Transcriptomic profiling of the white adipose tissue (WAT) in ApoE3L.CETP mice fed a high fat diet (HFD) or a low fat diet (LFD) for three different time periods, or chow diet at baseline
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The metabolic syndrome (MetS) is characterized by the presence of metabolic abnormalities that include abdominal obesity, dyslipidemia, hypertension, increased blood glucose/insulin resistance, hypertriglyceridemia and increased risk for cardiovascular disease (CVD). The ApoE*3Leiden.human Cholesteryl Ester Transfer Protein (ApoE3L.CETP) mouse model manifests several features of the MetS upon high fat diet (HFD) feeding. Moreover, the physiological changes in the white adipose tissue (WAT) contribute to MetS comorbidities. The aim of this study was to identify transcriptomic signatures in the gonadal WAT of ApoE3L.CETP mice in discrete stages of diet-induced MetS.

Publication Title

Transcriptome analysis of the adipose tissue in a mouse model of metabolic syndrome identifies gene signatures related to disease pathogenesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE16983
Expression data from placenta harvested from WT and Pth-null fetuses treated 90 minutes prior with saline or PTH (1-84)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Parathyroid hormone (PTH) plays an essential role in regulating calcium and bone homeostasis in the adult, but whether PTH is required at all for regulating fetal-placental mineral homeostasis is uncertain. To address this we treated Pth-null mice in utero with 1 nmol PTH (1-84) or saline and examined placental calcium transfer 90 minutes later. It was found that placental calcium transfer increased in Pth-null fetuses treated with PTH as compared to Pth-null fetuses treated with saline. Subsequently, to determine the effect of PTH treatment on placental gene expression, in a separate experiment, 90 minutes after the fetal injections the placentas were removed for subsequent RNA extraction and microarray analysis.

Publication Title

Parathyroid hormone regulates fetal-placental mineral homeostasis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact