refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE107941
Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

An animals ability to cope with or succumb to deleterious effects of chronic psychological stress may be rooted in the brains immune responses manifested in microglial activity. Mice subjected to chronic social defeat (CSD) were categorized as susceptible (CSD-S) or resilient (CSD-R) based on behavioral phenotyping, and their microglial RNAs were isolated and analyzed by global gene expression microarrays. Microglia transcriptome from CSD-S mice was enriched for pathways that describe phases of CNS healing to sterile injury including, inflammation, oxidative stress, debris clearance, and wound resolution. Histochemical experiments confirmed the array predictions: CSD-S microglia showed elevated phagocytosis and oxidative stress, and the brains of CSD-S but not CSD-R or HC mice showed vascular leakage of intravenously injected fluorescent tracers. The results suggest that the inflammatory profile of CSD-S microglia may be precipitated by leakage of blood-born substances into brain parenchyma. We hypothesize that these CNS-centric responses contribute to the stress-susceptible behavioral phenotype.

Publication Title

Decoding microglia responses to psychosocial stress reveals blood-brain barrier breakdown that may drive stress susceptibility.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58004
Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Persistent colonization of the gastric mucosa by Helicobacter pylori (Hp) elicits chronic inflammation and aberrant epithelial cell proliferation, which increases the risk of gastric cancer. We examined the ability of microRNAs to modulate gastric cell proliferation in response to persistent Hp infection and found that epigenetic silencing of miR-210 plays a key role in gastric disease progression. Importantly, DNA methylation of the miR-210 gene was increased in Hp-positive human gastric biopsies as compared to Hp-negative controls. Moreover silencing of miR-210 in gastric epithelial cells promoted proliferation. We identified STMN1 and DIMT1 as miR-210 target genes and demonstrated that inhibition of miR-210 expression augmented cell proliferation by activating STMN1 and DIMT1. Together, our results highlight inflammation-induced epigenetic silencing of miR-210 as a mechanism of induction of chronic gastric diseases, including cancer, during Hp infection.

Publication Title

Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE62477
MELK-T1, a small molecule inhibitor of protein kinase MELK, decreases DNA damage tolerance in highly proliferating cancer cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Maternal Embryonic Leucine Zipper Kinase (MELK), a Ser/Thr protein kinase, is highly over expressed in stem and cancer cells. The oncogenic role of MELK is attributed to its capacity to disable critical cell cycle checkpoints and to enhance replication. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing, but this is often compromised by off target effects. Here we present the cellular validation of a novel, potent and selective small molecule MELK inhibitor, MELK-T1, which has enabled us to explore the biological function of MELK. Strikingly, the binding of MELK-T1 to endogenous MELK triggers a rapid and proteasome dependent degradation of the MELK protein. Treatment of MCF-7 breast adenocarcinoma cells with MELK-T1 leads to an accumulation of stalled replication forks and double strand breaks, followed by a replicative senescence phenotype. This phenotype correlates with a rapid and long-lasting ATM activation and phosphorylation of CHK2. Furthermore, MELK-T1 induces strong phosphorylation of p53 and prolonged up-regulation of p21.

Publication Title

MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP113200
RNA-seq data of intestinal epithelial cells and lamina propria dendritic cells
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

We report that Klebsiella pneumoniae promote Th1 cell induction in colon. To examine the influence of Klebsiella on colonic epithelial cells (ECs) and lamina propria CD11c+ dendritic cells (DCs), we performed RNA seq on them. Germ free mice were orally inoculated with Kp-2H7 or BAA-2552 and total RNA was isolated from colonic ECs and DCs 1 week after inoculation. Furthermore, we examined the involvement of TLRs in induction of Th1 cells using Myd88 KO, Trif KO, Myd88/Trif DKO mice. These deficient germ free mice were orally inoculated with Kp-2H7 and total RNA was isolated from colonic ECs 3 weeks after inoculation. Overall design: The gene expression of colonic ECs and DCs isolated from germ free mice, and GF mice inoculated with Kp-2H7 or BAA-2552, and colonic ECs isolated from GF Myd88 KO, Trif KO or Myd88/Trif DKO mice inoculated with Kp-2H7.

Publication Title

Ectopic colonization of oral bacteria in the intestine drives T<sub>H</sub>1 cell induction and inflammation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact