refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 86 results
Sort by

Filters

Technology

Platform

accession-icon SRP186903
Profiling the transcriptome of human thymic epithelial cell subsets
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

RNA-seq libraries were generated on thymic epithelial cell (TEC) subsets from thymic samples (11 days to 3 months of age). Cells were sorted to isolate cortical TEC (cTEC), MHC low medullary TEC (mTEClo) and MHC high medullary TEC (mTEChi). Between 7,575 and 50,000 cells were isolated for each sample. TEC were isolated using CD45 MACS depletion followed by the sorting protocol described in Stoeckler et al. J Vis Exp 2013 (PMID 24084687; doi: 10.3791/50951). The study has been granted ethical approval and is publicly listed (IRAS ID 156910, CPMS 19587). Overall design: 1 sample for each of cTEC, mTEClo and mTEChi were generated on a total of 3 individuals (~50,000 cells per sample) and 3 replicates for each of cTEC, mTEClo and mTEChi were generated on 1 individual (7,575 cells per sample)

Publication Title

Keratinocyte growth factor impairs human thymic recovery from lymphopenia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE49577
Chemotherapy induced dynamic gene expression changes in vivo are prognostic in ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 101 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Carboplatin and paclitaxel are the most widely prescribed chemotherapeutic agents for ovarian cancer. Not all patients respond to treatment, so there is a need for biomarkers that reliably predict resistance in ovarian tumors. Expression of such biomarkers may be dynamically controlled. Gene expression was assessed for a period of 14 days after treatment with carboplatin or combined carboplatin-paclitaxel in xenografts from two ovarian cancer models: chemosensitive serous adenocarcinoma derived OV1002 and slow growing, chemoresistant HOX424 of clear cell origin. Tumour volume reduction was observed in both cell lines post treatment, with a more prominent effect in OV1002, which subsided in late time points. In OV1002, hierarchical clustering classified differentially expressed genes into four time-related patterns, upregulated and downregulated groups for each early and late expressed genes. Upregulated genes were involved in DNA repair, cell cycle and apoptosis, while downregulated groups were involved in oxygen consuming metabolic processes and apoptosis control. Carboplatin-paclitaxel treatment triggered a more comprehensive response. HOX424 responded only to the combined treatment, while the observed reduction in tumour growth was limited. Several apoptosis and cell cycle genes were upregulated, while Wnt signaling was downregulated in the exclusively late expression pattern observed in this cell line. Late downregulated gene groups post carboplatin-taxane treatment were capable of predicting overall survival in two independent clinical datesets. Pathways overrepresented in these clusters were also predictive of outcome. This longitudinal gene expression study may help characterization of chemotherapy response, identification of resistance biomarkers and guiding timing of biopsies.

Publication Title

Chemotherapy-induced dynamic gene expression changes in vivo are prognostic in ovarian cancer.

Sample Metadata Fields

Disease, Disease stage, Time

View Samples
accession-icon SRP075208
SOX7 supresses the expression of RUNX1 target genes during EHT
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The molecular mechanisms regulating endothelial to hematopoietic transition (EHT) of hemogenic endothelium (HE) are poorly understood. Here we profile the transcriptional changes resulting from SOX7 overexpression during EHT Overall design: FLK1+ cells were sorted from day 3.5 iSox7 EBs and cultured in liquid blast media for 48hours. Dox was added for 6, 12 and 24 hours to induce SOX7 expression, before samples were harvested for RNAseq.

Publication Title

Interplay between SOX7 and RUNX1 regulates hemogenic endothelial fate in the yolk sac.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE46860
Alleviation of telomere dysfunction and mitochondria defects of telomerase deficient somatic cells by reprogramming
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs) represent two major approaches for somatic cell reprogramming. However, little attention has been paid to the ability of these two strategies in rejuvenating cells from donors with aging associated syndrome. Here, we utilized telomerase deficient (Terc-/-) mice to probe this question. SCNT-derived embryonic stem cells (ntESCs) and iPSCs were successfully derived from second generation (G2) and third generation (G3) of Terc-/- mice, and ntESCs showed better differentiation potential and self-renewal ability. Telomeres lengthened extensively in cloned embryos while remained or slightly increased in the process of iPSCs induction. Furthermore, G3 ntESCs exhibited improvement of telomere capping function as evidenced by decreased signal free ends and chromosome end-to-end fusion events. In contrast, there was a further decline of telomere capping function in G3 iPSCs. In addition to telomere dysfunction, mitochondria function was severely impaired in G3 iPSCs as evidenced by oxygen consumption rate (OCR) decline, reactive oxygen species (ROS) accumulation and dramatically increased mitochondria genome mutations while these deficiencies were greatly mitigated in G3 ntESCs. Our data proved the principle that SCNT-mediated reprogramming appears more superior than transcription factors induced reprogramming in terms of the resetting of telomere quality and mitochondria function, and thus, providing valuable information for further improvement of transcription factors mediated reprogramming.

Publication Title

Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP058396
RUNX1B expression distinguishes megakaryocytic and erythroid lineage fate in adult hematopoiesis
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny, which also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. The activities and specific relevance of these two promoters in adult hematopoiesis remain to be fully elucidated. Utilizing a dual reporter model, we demonstrate here that the distal P1 promoter is broadly active in adult hematopoietic stem and progenitor cell (HSPC) populations. By contrast, the activity of the proximal P2 promoter is more restricted and its upregulation, in both the immature Lineage- Sca1high cKithigh (LSK) and bipotential Pre-Megakaryocytic/Erythroid Progenitor (PreMegE) populations, coincides with a loss of erythroid specification. Accordingly, the PreMegE population can be prospectively separated into "pro-erythroid" and "pro-megakaryocyte" populations based on Runx1 P2 activity. Comparative gene expression analyses between Runx1 P2+ and P2- populations indicated that the level of CD34 expression could substitute for P2 activity to distinguish these two cell populations in wild type (WT) bone marrow (BM). Prospective isolation of these two populations will provide the opportunity to further investigate and define the molecular mechanisms involved in megakaryocytic/erythroid (Mk/Ery) cell fate decisions. Moreover, comparison of a RUNX1C null (KO) PreMegE to its WT counterpart demonstrated considerably enhanced erythroid specification at the expense of megakaryopoiesis in the absence of P1-specified RUNX1C expression. Overall design: mRNA profiles of wild type (WT), Runx1 P2-hCD4+ (P2+), Runx1 P2-hCD4- (P2-) and RUNX1C knockout (KO) bone marrow Pre-Megakaryocyte/Erythroid (PreMegE) progenitors were generated from young adult (12-16 weeks) mice by deep sequencing, in triplicate, using Illumina NextSeq 500.

Publication Title

RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP126078
Single Cell RNA Sequencing Analysis of Mouse E14.5 Fetal Liver Runx1 P2-hCD4 plus and minus MEPs and CMPs
  • organism-icon Mus musculus
  • sample-icon 700 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In recent years, highly detailed characterization of adult bone marrow (BM) myeloid progenitors has been achieved and, as a result, the impact of somatic defects on different hematopoietic lineage fate decisions can be precisely determined. Fetal liver (FL) hematopoietic progenitor cells (HPCs) are poorly characterized in comparison, potentially hindering the study of the impact of genetic alterations on midgestation hematopoiesis. Numerous disorders, for example infant acute leukaemias, have in utero origins and their study would therefore benefit from the ability to isolate highly purified progenitor subsets. We previously demonstrated that a Runx1 distal promoter (P1)-GFP::proximal promoter (P2)-hCD4 dual-reporter mouse (Mus musculus) model can be used to identify adult BM progenitor subsets with distinct lineage preferences. In this study, we undertook the characterization of the expression of Runx1-P1-GFP and P2-hCD4 in FL. Expression of P2-hCD4 in the FL immunophenotypic Megakaryocyte-Erythroid Progenitor (MEP) and Common Myeloid Progenitor (CMP) compartments corresponded to increased granulocytic/monocytic/megakaryocytic and decreased erythroid specification. Moreover, Runx1-P2-hCD4 expression correlated with several endogenous cell surface markers' expression, including CD31 and CD45, providing a new strategy for prospective identification of highly purified fetal myeloid progenitors in transgenic mouse models. We utilized this methodology to compare the impact of the deletion of either total RUNX1 or RUNX1C alone and to determine the fetal HPCs lineages most substantially affected. This new prospective identification of FL progenitors therefore raises the prospect of identifying the underlying gene networks responsible with greater precision than previously possible. Overall design: mRNA profiles of single sorted Runx1 P2-hCD4+ Megakaryocyte Erythroid Progenitors (MEPs), Runx1 P2-hCD4- MEPs, Runx1 P2-hCD4+ Common Myeloid Progenitors (CMPs) and Runx1 P2-hCD4- CMPs from Mouse E14.5 Runx1 P2-GFP::P2-hCD4/+ Fetal Liver Samples

Publication Title

A novel prospective isolation of murine fetal liver progenitors to study in utero hematopoietic defects.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12887
Differential response of gun mutants to norflurazon
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Analysis of the genome wide response of wild type and two mutant arabidopsis thaliana seedlings to norflurazon

Publication Title

Signals from chloroplasts converge to regulate nuclear gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP137016
Single cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta
  • organism-icon Mus musculus
  • sample-icon 67 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2000

Description

We present single-cell mRNA-Sequencing of various endothelial and hematopoietic populations isolated from the mouse embryonic aorta at E10 and E11. Our study reveals the transcriptional dynamics occuring during endothelial to hematopoietic transition, the process responsible for the production of hematopoietic stem cells. Overall design: single-cell mRNA-Sequencing of various endothelial and hematopoietic populations isolated from the mouse embryonic aorta at E10 and E11

Publication Title

Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP049716
RNA sequencing of the developing zebrafish head
  • organism-icon Danio rerio
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We sequenced strand-specific mRNA from the heads of 3 groups of wild type zebrafish (Danio rerio) 5 days post fertilization. Overall design: Examination of the relative expression of genes in the developing zebrafish brain

Publication Title

BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP093883
List of TIAM1 differentially expressed genes in SW620 cells [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon

Description

The T lymphoma invasion and metastasis inducing protein 1 (TIAM1) is a guanine nucleotide exchange factor (GEF) that activates the small GTPase RAC1 and regulates a plethora of functions such as cell proliferation, migration, apoptosis and polarity. Recently, we demonstrated that TIAM1 shuttles between the cytoplasm and nucleus. To determine the nuclear role of TIAM1, we performed RNA-seq on SW620 cells transfected either with a specific pre-validated siRNA for TIAM1 (siTIAM1) or a negative control siRNA (siNT) and generated a list of TIAM1 differentially expressed genes. GSEA revealed significant enrichment among TIAM1-regulated genes for YAP-associated molecular signature. To investigate the interplay of TIAM1 with YAP/TAZ we used RNA-seq, generated a list of YAP/TAZ differentially expressed genes from SW620 cells transfected either with specific siRNAs for YAP/TAZ or a negative control siRNA and compared it with the siTIAM1 RNA-seq dataset. Interestingly, we found that 50% of the TAZ/YAP regulated genes were also TIAM1 dependent. Overall design: mRNA profiles of control, TIAM1 or YAP/TAZ knockdown SW620 cells were generated from three independent experiments using RNA-seq

Publication Title

TIAM1 Antagonizes TAZ/YAP Both in the Destruction Complex in the Cytoplasm and in the Nucleus to Inhibit Invasion of Intestinal Epithelial Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact