refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon SRP057558
Transcriptome comparison of oocytes obtained from in vitro culture and in vivo
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The comparison of trancriptomes was part of the study by Pfender, Kuznetsov, Pasternak et al, titled: "Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes". The goal was to check if the oocytes cultured in vitro in follicles (for RNAi studies) correspond to real gametes obtained directly from mice (in vivo). Apart from functional experiments showing that they can be fertilized and develop into an embryo, we also compared transcriptomes of those oocytes. Overall design: 3 samples of 50 oocytes were collected for both groups of in vitro and in vivo grown oocytes.

Publication Title

Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150331
Transcriptome landscape of HeLa response upon triamcinolone acetonide
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Glucocorticoids (GCs) are essential steroid hormones that regulate the immune system. GCs have been widely used to treat various inflammation disorders and auto-immune diseases, due to their potent immune repression properties. Overall design: HeLa cells were cultured with DMEM plus 10% charcoal-stripped FBS. HeLa cells were treated in the presence of 100 nM triamcinolone acetonide (TA) for 4 hours. Cells were then collected for RNA-seq.

Publication Title

Extensive epigenomic integration of the glucocorticoid response in primary human monocytes and in vitro derived macrophages.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP150074
Transcriptome landscape of human primary monocytes response upon different ligand glucocorticoids
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Glucocorticoids (GCs) are essential steroid hormones that regulate the immune system. GCs have been widely used to treat various inflammation disorders and auto-immune diseases, due to their potent immune repression properties. Overall design: Monocytes from healthy donors were cultured in the presence of 100 nM triamcinolone acetonide (TA), 100 nM Dexamethasone (Dex) or 100 nM Prednisolone (Pred) for 4 hours. Cells were then collected for RNA-seq.

Publication Title

Extensive epigenomic integration of the glucocorticoid response in primary human monocytes and in vitro derived macrophages.

Sample Metadata Fields

Specimen part, Disease, Treatment, Subject

View Samples
accession-icon GSE61304
Novel bio-marker discovery for stratification and prognosis of breast cancer patients
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The study entails novel bio-marker discovery of Tumor Aggressive Grade signature (TAGs) genes and their role in recurrence free survival of breast cancer (BC) patients. Current BC dataset was used for co-expression analysis of TAGs genes and their role in BC progression. Additionally, recent findings have suggested an importance of structural organization of sense-antisense gene pairs (SAGPs) for transcription, post-transcriptional and post-translational events and their associations with cancer and disease. We studied SAGPs in which both gene partners are protein encoding genes (coding-coding SAGPs), their role in human BC development and demonstrated their potential for BC stratification and prognosis. Based on gene expression and correlation analyses we identified the robust set of breast cancer-relevant SAGPs (BCR-SAGPs). We isolated and characterized the sense-antisense gene signature (SAGS) and evaluated its prognostic potential in various gene expression datasets comprising 1161 BC patients. The methods used included the Cox proportional survival analysis, statistical analysis of clinicopathologic parameters and differential gene expression. The SAGS was effective in identification of BC patients with the most aggressive disease. Independently, we validated the SAGS using 58 RNA samples of breast cancer tumors purchased from OriGene Technologies (Rockville, MD).

Publication Title

Sense-antisense gene-pairs in breast cancer and associated pathological pathways.

Sample Metadata Fields

Age, Disease, Disease stage

View Samples
accession-icon GSE64789
Distinct gene expression patterns of multipotent' versus unipotent' single colony-derived strains (SCDSs) of human bone marrow stromal cells (BMSCs)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Dyskeratosis congenita (DC) is an inherited multi-system disorder, characterized by oral leukoplakia, nail dystrophy, and abnormal skin pigmentation, as well as high rates of bone marrow failure, solid tumors, and other medical problems such as osteopenia. DC and telomere biology disorders (collectively referred to as TBD here) are caused by germline mutations in telomere biology genes leading to very short telomeres and limited proliferative potential of hematopoietic stem cells. We found that skeletal stem cells (SSCs) within the bone marrow stromal cell population (BMSCs, also known as bone marrow-derived mesenchymal stem cells), may contribute to the hematological phenotype.

Publication Title

Molecular profile of clonal strains of human skeletal stem/progenitor cells with different potencies.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP139607
Defining the transcriptome of T cells transduced with FOXP3fl or FOXP3d2
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Rationale - Regulatory T (Treg) cells suppress immune responses and have been shown to attenuate atherosclerosis. The Treg cell lineage specification factor FOXP3 is essential for Treg cells' ability to uphold immunological tolerance. In humans, FOXP3 exists in several different isoforms, however, their specific role is poorly understood. Objective - To define the regulation and functions of the two major FOXP3 isoforms, FOXP3fl and FOXP3?2, as well as to establish whether their expression is associated with ischemic atherosclerotic disease. Methods and Results - Human primary T-cells were transduced with lentiviruses encoding distinct FOXP3 isoforms. The phenotype and function of these cells were analyzed by flow cytometry, in vitro suppression assays and RNA-sequencing. We also assessed the effect of activation on Treg cells isolated from healthy volunteers. Treg cell activation resulted in increased FOXP3 expression that predominantly was made up of FOXP3?2. FOXP3?2 induced specific transcription of GARP, which functions by tethering the immunosuppressive cytokine TGF-ß to the cell membrane of activated Treg cells. RT-PCR was used to determine the impact of alternative splicing of FOXP3 in relation with atherosclerotic plaque stability in a cohort of over 150 patients that underwent carotid endarterectomy. Plaque instability was associated with a lower FOXP3?2 transcript usage, when comparing plaques from patients without symptoms and patients with occurrence of recent (<1 month) vascular symptoms including minor stoke, transient ischemic attack or amaurosis fugax. No difference was detected in total levels of FOXP3 mRNA between these two groups. Conclusions - These results suggest that activated Treg cells suppress the atherosclerotic disease process and that FOXP3?2 controls a transcriptional program that acts protectively in human atherosclerotic plaques. Overall design: In this experiment we have analyzed 3 groups of each 3 biological repliactes equalling 9 samples in total.

Publication Title

Alternative Splicing of <i>FOXP3</i> Controls Regulatory T Cell Effector Functions and Is Associated With Human Atherosclerotic Plaque Stability.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP072835
The MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in MLLr AML
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

In MLL-rearranged (MLLr) leukemias the N terminal part of the MLL gene can be fused to over 60 different partner genes. Here, we investigate the genome wide binding of the MLL-AF9 and MLL-AF4 fusion proteins and their epigenetic signatures in order to define a core set of MLLr targets. We uncover both common as well as specific MLL-AF9 and MLL-AF4 target genes, which are all marked by H3K79me2, H3K27ac, and H3K4me3. Apart from promoter binding, we also identify MLL-AF9 and MLL-AF4 binding at specific subsets of non overlapping active distal regulatory elements. Despite this differential enhancer binding MLL-AF9 and MLL-AF4 still share a common gene program, which represents part of the RUNX1 gene program and constitutes of CD34+ and monocyte specific genes. Comparing these datasets revealed several zinc finger transcription factors as potential MLL-AF9 co-regulators. Together these results suggest that MLL-fusions collaborate with specific subsets of TFs to aberrantly regulate the RUNX1 gene program in 11q23 AMLs. Overall design: Genome-wide (ChIP-seq) binding of MLL, AF9, AF4, H3K4me3, H3K27ac, H3K79me2 and RUNX1 in THP-1 and MV4-11 AML cell lines. Expression Profiling (RNA-seq) of THP-1 and MV4-11 cell lines, as well as 5 MLL-AF9 positive patient blasts.

Publication Title

MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25213
EVI1 and AP1 Interact to Transcriptionally Regulate a Feed-Forward Loop Important for Cancer Cell Proliferation and Adhesion
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Ecotopic viral integration site 1 (EVI1) regulates multiple cellular processes important for cancer and is a synergistic partner for FOS protein in invasive tumors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE25212
Effects of Evi1 knockdown and overexpression in SKOV-3 ovarian carcinoma cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We studied the variations of mRNA amounts after Evi1 knockdown or Flag-Evi1 overexpression in SKOV-3 cells.

Publication Title

Ecotopic viral integration site 1 (EVI1) regulates multiple cellular processes important for cancer and is a synergistic partner for FOS protein in invasive tumors.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE33724
Effects of EVI1 mild expression in HeLa cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We studied the variations of mRNA amounts after Flag-EVI1 or Flag expression in HeLa cells.

Publication Title

Ecotopic viral integration site 1 (EVI1) regulates multiple cellular processes important for cancer and is a synergistic partner for FOS protein in invasive tumors.

Sample Metadata Fields

Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact