refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 87 results
Sort by

Filters

Technology

Platform

accession-icon GSE3529
Profiling of three different ER+ breast cancer cell lines grown in the presence and absence of estrogen.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Three human ER+ breast cancer cell lines--MCF-7, T47-D, BT-474--grown with or without estradiol (E2).

Publication Title

GREB 1 is a critical regulator of hormone dependent breast cancer growth.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE81302
Expression data from rat brain following ischemic stroke or undercut
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Although it is well known that stroke and head trauma are one of the high risk factors for the development of acquired epilepsy, the cellular mechanisms underlying the epileptogenesis is not well understood. Using rodent models of ischemic stroke and head trauma (partial cortical isolation, undercut), we comparatively analyzed transcription profiles between two different models to explore the commonality.

Publication Title

TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon SRP186787
Inferring dynamic regulatory programs in non-stationary expression time courses with applications to early human neural development
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We generated RNA-seq data to measure transcriptional profiles of twenty hPSC-derived NSC populations, representing distinct regions of the developing human hindbrain and rostral cervical spinal cord. These cells are differentiated using a protocol that induces collinear activation of region-specific HOX genes during exposure to FGF8 and Wnt signaling (Lippmann et al, 2015 PMID:25843047). By transitioning to media containing retinoic acid after varying durations of Wnt signaling, NSCs are generated with unique rostrocaudal identities that uniformly express the neuroectodermal marker Pax6 and form N-cadherin+ rosette structures in vitro. Overall design: The data consist of RNA-seq measurements taken from hPSC-derived NSCs that were exposed to CHIR99021 for differents amount of time (2-72hr) prior to retinoic acid treatment. Each time point is represented in triplicate, with the exception of 48 hours, for which one replicate (48_B1) was filtered due to excessive zero-count genes.

Publication Title

Inferring Regulatory Programs Governing Region Specificity of Neuroepithelial Stem Cells during Early Hindbrain and Spinal Cord Development.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE75421
Expression data of tongue mucosa from normal mice and mice treated by the 4-NQO
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

A better understanding of molecular changes during oral tumorigenesis may help defining new personalized prevention strategies. In order to test this hypothesis, we analyzed whole-genome expression changes in a murine model of oral carcinogenesis, induced by an oral carcinogen (4-NQO)

Publication Title

The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE27389
Substitutions in the KRas oncogene determine protein behavior: Implications for signaling and clinical outcome.
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Mutant KRAS (mut-KRAS) is present in 30% of all human cancers and plays a critical role in cancer cell growth and resistance to therapy. There is evidence from colon cancer that mut-KRAS is a poor prognostic factor and negative predictor of patient response to molecularly targeted therapy. However, evidence for such a relationship in non small cell lung cancer (NSCLC) is conflicting. KRAS mutations are primarily found at codons 12 and 13, where different base changes lead to alternate amino acid substitutions that lock the protein in an active state. The patterns of mut-KRas amino acid substitutions in colon cancer and NSCLC are quite different, with aspartate (D) predominating in colon cancer (50%) and cysteine (C) in NSCLC (47%).

Publication Title

Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome.

Sample Metadata Fields

Sex, Disease, Treatment, Race

View Samples
accession-icon GSE32697
Thrombospondin-1 type 1 repeats in a model of inflammatory bowel disease: genetic profile and therapeutic effects
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Thrombospondin 1 (TSP-1) is an anti-angiogenic matricellular protein with regulatory functions in inflammation and cancer. The type 1 repeats (TSR) domains of TSP-1 have been shown to interact with a wide range of proteins that result in the anti-angiogenic and anti-tumor properties of TSP-1. To evaluate potential therapeutic effects of TSRs in inflammatory bowel disease, we conducted clinical, histological and gene microarray analyses on a mouse model of induced colitis.

Publication Title

Thrombospondin-1 type 1 repeats in a model of inflammatory bowel disease: transcript profile and therapeutic effects.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69017
caArray_gray-00215: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model system to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell lines mirror those of 145 primary breast tumors, although some significant differences are documented. The cell lines that comprise the system also exhibit the substantial genomic, transcriptional, and biological heterogeneity found in primary tumors. We show, using Trastuzumab (Herceptin) monotherapy as an example, that the system can be used to identify molecular features that predict or indicate response to targeted therapies or other physiological perturbations.

Publication Title

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP149486
Gene expression changes in Ing1- and Gadd45a- single- or double-knockout mouse embryonic fibroblasts
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

ING1b and GADD45a are nuclear proteins involved in the regulation of cell growth, apoptosis and DNA repair. We previously found that ING1b is required to target GADD45a-mediated active DNA-demethylation via TET1 to specific loci. In order to study the impact of ING1-GADD45a on gene expression, we compared the expression profile of wildtype mouse embryonic fibroblasts (MEFs) with Ing1- and Gadd45a- single- or double-knockout (DKO) MEFs. Overall design: Gene expression profiling in all 4 genotypes of undifferentiated MEFs in triplicates.

Publication Title

Impaired DNA demethylation of C/EBP sites causes premature aging.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE24634
Expression data from developing regulatory T cells
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

CD25+ regulatory T cells develop in the thymus (nTregs), but may also be generated in the periphery upon stimulation of naive CD4 T cells under appropriate conditions (iTregs). The mechanisms that regulate the generation of peripheral iTregs are largely unknown.

Publication Title

Analysis of the transcriptional program of developing induced regulatory T cells.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon SRP073183
Analysis of Post-TBI Gene Expression Signature Reveals Tubulins, NFE2L2, NFkB, CD44, and S100A4 as Treatment Targets for Traumatic Brain Injury
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

TBI was induced with lateral fluid-percussion injury in adult male rats. Genome-wide RNA-seq of the perilesional cortex, ipsilateral thalamus and dorsal hippocampus was performed at 3 months post-TBI. The data highlighted chronic transcriptional changes, particularly, in the perilesional cortex and thalamus. Genes showing a significantly altered expression both in the cortex and thalamus were submitted to the LINCS web query to identify novel pharmacotherapies to improve post-TBI outcome. Overall design: TBI was induced to 5 rats, 5 sham operated served as a controls.

Publication Title

Analysis of Post-Traumatic Brain Injury Gene Expression Signature Reveals Tubulins, Nfe2l2, Nfkb, Cd44, and S100a4 as Treatment Targets.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact