refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 135 results
Sort by

Filters

Technology

Platform

accession-icon GSE10746
Chemotherapy-induced oral mucositis (CIOM) in patients with acute myeloid leukemia (AML)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Chemotherapy may cause DNA damage within the oral mucosa of cancer patients leading to mucositis, a dose-limiting side effect for effective cancer treatment.

Publication Title

Microarray analyses of oral punch biopsies from acute myeloid leukemia (AML) patients treated with chemotherapy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6238
Mechanisms of Aging in Senescence-Accelerated Mice
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Background: Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J).

Publication Title

Mechanisms of aging in senescence-accelerated mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE103726
Expression data from normal weight/obese and sham/injured female C57BL/6J mice
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Injury of skeletal muscle is a common occurence affecting millions worldwide. Injuries usually are not major incisions into daily life, however, the underlying health varies e. g. due to obesity. Obesity is usually accompanied by excessive and dysfunctional lipid depots, chronic low-grade inflammation as well as several co-morbidities, which are able to impair the regeneration of skeletal muscle.

Publication Title

Comparison of Fatty Acid and Gene Profiles in Skeletal Muscle in Normal and Obese C57BL/6J Mice before and after Blunt Muscle Injury.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE7540
Gene expression analysis of the human and chimpanzee brain
  • organism-icon Pan troglodytes, Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

The origin of humans was accompanied by the emergence of new behavioral and cognitive functions, including language and specialized forms of abstract representation. However, the molecular foundations of these human capabilities are poorly understood. Because of the extensive similarity between human and chimpanzee DNA sequences, it has been suggested that many of the key phenotypic differences between species result primarily from alterations in the regulation of genes rather than in their sequences.

Publication Title

Elevated gene expression levels distinguish human from non-human primate brains.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE3327
Adult mouse gene expression
  • organism-icon Mus musculus
  • sample-icon 87 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Adult mouse gene expression patterns in common strains

Publication Title

Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150217
Widespread inter-individual gene expression variability in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 165 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

A fundamental question in biology is how gene expression is regulated to give rise to a phenotype. However, transcriptional variability is rarely considered and could influence the relationship between genotype and phenotype. It is known in unicellular organisms that gene expression is often noisy rather than uniform and has been proposed to be beneficial when environmental conditions are unpredictable. However, little is known about transcriptional variability in multicellular organisms. Using transcriptomic approaches, we analysed gene expression variability over a 24 hours time-course between individual Arabidopsis thaliana plants growing in stable conditions. We identified hundreds of genes that exhibit high inter-individual variability and found that many are involved in environmental responses. We also identified factors that might facilitate gene expression variability, such as gene size, the number of transcription factors regulating a gene and the chromatin environment. These results will bring a new light into the impact of transcriptional variability in gene expression regulation in plants. Overall design: RNA-seq were generated for 14 individual seedlings for each of the 12 following time points: ZT2, ZT4, ZT6, ZT8, ZT10, ZT12 (just before dusk), ZT14, ZT16, ZT18, ZT20, ZT22 and ZT24 (just before dawn).

Publication Title

Widespread inter-individual gene expression variability in <i>Arabidopsis thaliana</i>.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE43936
Evaluation of effect of PTEN gene deletion in mouse CD4+ Th1 clones after stimulation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PTEN is thought to play a critical role in T cell activation by negatively regulating the PI3K signaling pathway important for cellular activation, growth, and proliferation. T cells from mice in which PTEN was conditionally deleted in the thymus were reported to display CD28-independent IL-2 production and relative resistance to anergy induction. However, such observations could have stemmed from alterations in T cell development due to early deletion in thymocytes. To directly eliminate PTEN in post-thymic T cells, we utilized CAR Tg x PTENflox/flox mice which enabled gene deletion using a Cre adenovirus in vitro. Gene expression profiling revealed a small subset of induced genes that were augmented upon PTEN deletion and T cell stimulation. Our results indicate that deletion of PTEN can augment the activation of post-thymic T cells. Nonetheless, PTEN inhibition may be a viable target for immune potentiation due to increased cytokine production by activated CD4+ cells.

Publication Title

Conditional deletion of PTEN in peripheral T cells augments TCR-mediated activation but does not abrogate CD28 dependency or prevent anergy induction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5392
Expression profiling of human adult postmortem brain tissue from subjects with bipolar disorder and healthy controls
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex and orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls.

Publication Title

Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE5388
Adult postmortem brain tissue (dorsolateral prefrontal cortex) from subjects with bipolar disorder and healthy controls
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex) from patients with bipolar disorder and matched healthy controls. A cohort of 70 subjects was investigated and the final analysis included 30 bipolar and 31 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing.

Publication Title

Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE13564
Gene expression in the human prefrontal cortex during postnatal development
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Fresh frozen post mortem prefrontal cortex tissue (Brodman area 46) was obtained from 44 individuals varying in age from 0 to 49 years. RNA was extracted from these samples and hybridized to HG133plus2.0 GeneChips. The data was used to examine patterns of gene expression over the course of human postnatal developmental and ageing.

Publication Title

Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact