refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 115 results
Sort by

Filters

Technology

Platform

accession-icon SRP070835
Transcriptomes of individual substantia nigra pars reticulata neurons
  • organism-icon Mus musculus
  • sample-icon 320 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Certain neuron types fire spontaneously at high rates, an ability that is crucial for their function in brain circuits. The spontaneously active GABAergic neurons of the substantia nigra pars reticulata (SNr), a major output of the basal ganglia, provide tonic inhibition of downstream brain areas. A depolarizing "leak" current supports this firing pattern, but its molecular basis remains poorly understood. To understand how SNr neurons maintain tonic activity, we used single-cell RNA sequencing to determine the transcriptome of individual SNr neurons. We discovered that SNr neurons express the sodium leak current, NaLCN and that SNr neurons lacking NaLCN have impaired spontaneous firing. Overall design: RNA sequencing profiles from 87 GFP-positive GABAergic SNr neurons and 9 GFP-negative SNr cells were carried out. However only 80 samples that passed initial quality control and that were included in the data processing are represented in this record.

Publication Title

The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE43887
Expression data of host gene response to Escherichia coli 83972
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Bacterial control of host gene expression through RNA polymerase II.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE43838
Gene expression profile in patients inoculated with E. coli 83972
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression.

Publication Title

Bacterial control of host gene expression through RNA polymerase II.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE43886
Expression data profile of A498 cells treated with DRB or E. coli 83972
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression.

Publication Title

Bacterial control of host gene expression through RNA polymerase II.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE95309
Gene expression analyses in otefin mutant Drosophila ovaries
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

LEM Domain proteins are key components of the nuclear lamina. Mutations in LEM-D proteins cause dystrophic diseases associated with compromised adult stem cells, yet it remains unclear how LEM-D proteins support stem cell function. Studies described here use the homologue of the LEM-D protein emerin in Drosophila, Otefin (Ote) as a model to understand LEM-D protein function in adult stem cells. Loss of Ote causes female sterility due to a complex germline stem cell (GSC) phenotype that includes both an early block in germline differentiation followed by GSC death. In vivo cell cycle analysis revealed that ote mutant GSCs display a lengthened S phase.We find that loss of the DNA Damage Response (DDR) Chk2 is able to not only rescue the lengthened S phase, but also GSC death and the block in germline differentiation. Activation of detrimental checkpoint in absence of Ote is conserved in both male and female GSCs and surprisingly occurs independent of detectable canonical DDR triggers, including transposon de-repression and DNA damage. Two defects were found to occur upstream of Chk2 activation: nuclear lamina morphological defects and altered heterochromatin organization. Together, our data identify the primary cause for a compromised adult stem cell population in the absence of a LEM-D protein.

Publication Title

Nuclear lamina dysfunction triggers a germline stem cell checkpoint.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40586
Peripheral blood RNA gene expression profiling in patients with bacterial meningitis
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of present study was to describe the genetic pathways activated during the community acquired bacterial meningitis (BM) by using genome-wide RNA expression profiling combined with functional annotation of transcriptional changes. We included 21 patients with BM hospitalized in 2008. The control group consisted of 18 healthy subjects. The RNA was extracted from whole blood, globin mRNA was depleted and gene expression profiling was performed with GeneChip Human Gene 1.0 ST Arrays enabling the analysis of 28,869 genes. Gene expression profile data were analyzed using Bioconductor packages and Bayesian modeling. Functional annotation of the enriched gene sets was used to define changed genetic networks. We also analyzed if the gene expression profile depends on the clinical course and outcome. In order to verify the genechip results, we chose ten functionally relevant genes with high statistical significance (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, IL7R) and performed quantitative real-time (qRT) PCR.We identified the significant differences at p values of <0.05 in 8569 genes and after False Discovery Rate (FDR) correction, total of 5500 genes remained significant at p value of <0.01. Quantitative RT-PCR confirmed differential expression for selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation of humoral and cellular immune responses (enrichment score 43). Those changes were found in adults and in children with BM compared to the healthy controls. Gene expression profile didnt depend on the clinical outcome, but there was very strong influence by the type of the pathogen. This study demonstrates a strong functional genomic evidence of the over-active immune response during bacterial meningitis. This hyperactive response possibly explains the complicated clinical course of this disease.

Publication Title

Peripheral blood RNA gene expression profiling in patients with bacterial meningitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5348
Specific changes of liver transcriptome in the early stages of copper accumulation in the mouse model of wilson disease
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Wilson disease (WD) is a severe metabolic disorder caused by genetic inactivation of copper-transporting ATPase ATP7B. In WD, copper accumulates in several tissues, particularly in the liver, inducing marked time-dependent pathological changes. To identify initial events in the copper-dependent development of liver pathology we utilized the Atp7b-/- mice, an animal model for WD. Analysis of mRNA from livers of control and Atp7b-/- 6 weeks-old mice using oligonucleotide arrays revealed specific changes of the transcriptome at this stage of copper accumulation. Few messages (29 up-regulated and 46 down-regulated) change their abundance more than 2-fold pointing to the specific effect of copper on gene expression/mRNA stability. The gene ontology analysis revealed copper effects on distinct metabolic pathways.

Publication Title

High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP014142
Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Illumina Genome Analyzer II

Description

To comprehensively characterize microRNA (miRNA) expression in breast cancer, we performed the first extensive next-generation sequencing expression analysis of this disease. We sequenced small RNA from tumors with paired samples of normal and tumor-adjacent breast tissue. Our results indicate that tumor identity is achieved mainly by variation in the expression levels of a common set of miRNAs rather than by tissue-specific expression. We also report 361 new, well-supported miRNA precursors. Nearly two-thirds of these new genes were detected in other human tissues and 49% of the miRNAs were found associated with Ago2 in MCF7 cells. Ten percent of the new miRNAs are located in regions with high-level genomic amplifications in breast cancer. A new miRNA is encoded within the ERBB2/Her2 gene and amplification of this gene leads to overexpression of the new miRNA, indicating that this potent oncogene and important clinical marker may have two different biological functions. In summary, our work substantially expands the number of known miRNAs and highlights the complexity of small RNA expression in breast cancer. Overall design: Sequencing of approximately 18-35 nt small RNAs from paired samples of normal, tumor and tumor-adjacent tissue for five breast cancer patients

Publication Title

Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE19380
Gene expression from primary brain cell cultures and RNA mixtures.
  • organism-icon Rattus norvegicus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Gene expression from primary neuronal, astrocytic, oligodendrocytic and microglial cultures, as well as from RNA mixtures thereof.

Publication Title

Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP058699
Gene expression of rhabdomyosarcoma cells infected with cytolytic and non-cytolytic variants of coxsackievirus B2 Ohio
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

In this study the gene expression in cells infected with lytic and non-lytic variants of coxsackievirus B2 Ohio (CVB2O) were analyzed using next generation sequencing. This approach was selected with the purpose of elucidating the effects of lytic and non-lytic viruses on host cell transcription. Total RNA was extracted from infected cells, next generation sequencing was performed, and the reads were subsequently mapped against the human and CVB2O genomes. The amount of intracellular virions was measured, showing a relative amount of virus RNA 13 times higher in the cells infected with the lytic variant, vVP1Q164K, compared to cells infected by the non-lytic CVB2Owt. Furthermore, differential gene expression in the cells infected with the two viruses was identified and a number of genes singled out as possible keys to the answer of how the viruses interact with the host cells, resulting in lytic or non-lytic infections. Overall design: 4 samples, two samples of one strain, one sample of a different strain, and one control sample

Publication Title

The Transcriptome of Rhabdomyosarcoma Cells Infected with Cytolytic and Non-Cytolytic Variants of Coxsackievirus B2 Ohio-1.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact