refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 989 results
Sort by

Filters

Technology

Platform

accession-icon SRP073810
RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To understand the nature of glucocorticoids targeting non-immune cell function, we generate RNA sequencing data from 3 human podocyte cell lines derived from 3 kidney transplant donors and identify the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells.Our results represent a significant step forward in the genome-wide characterization of the molecular effects of glucocorticoids on human podocytes. The resource generated in this study is important for understanding the targeting of non-immune cell function by glucocorticoids and also for designing more specific podocyte-targeted agents for MCN therapy. Overall design: Transcriptome profiles of human podocytes treated with vehicle and dexamethasone were generated by RNA-sequencing using Illumina HiSeq 2500

Publication Title

RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE1419
Pancreatic T regulatory vs. T effector cells
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Comparison of gene expression between T regulatory and T effector cells isolated from the pancreatic lesion of 3-4 wk old BDC2.5 tg NOD mice

Publication Title

Where CD4+CD25+ T reg cells impinge on autoimmune diabetes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE42276
Gene expression profile of conventional T cells (Tconv) and regulatory T cells (Treg) stimulated with anti-costimulatory molecule antibodies
  • organism-icon Mus musculus
  • sample-icon 85 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Co-stimulatory molecules of the CD28 family on T lymphocytes integrate cues from innate immune system sensors, and modulate activation responses in conventional CD4+ T cells (Tconv) and their FoxP3+ regulatory counterparts (Treg). To better understand how costimulatory and co-inhibitory signals might be integrated, we profiled the changes in gene expression elicited in the hours and days after engagement of Treg and Tconv by anti-CD3 and either anti-CD28, -CTLA4, -ICOS, -PD1, -BTLA or -CD80.

Publication Title

Convergent and divergent effects of costimulatory molecules in conventional and regulatory CD4+ T cells.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE110308
Treg cells limit IFN-g production to control macrophage accrual and phenotype during skeletal muscle regeneration
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We report transcriptional characterization of skeletal muscle macrophage subsets in normal and injured muscle after intramuscular injection with cardiotoxin. We profiled transcriptional differences in macrophage subsets from mice depleted of Treg cells using Foxp3-DTR mice. We uncovered an IFN-g-centered regulatory loop, in which Treg cells inhibit NK and T cells to control macrophage accumulation and phenotype during muscle regeneration.

Publication Title

T<sub>reg</sub> cells limit IFN-γ production to control macrophage accrual and phenotype during skeletal muscle regeneration.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE1085
Profiling of aggressive vs benign pancreatic infiltrates in the BDC2.5 Tg model of Type I diabetes
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This study was performed to understand what controls the aggressivity of the pancreatic infiltrate during type-I diabetes development. We used the BDC2.5 transgenic mouse model. Samples were obtained at the age of onset of insultis. Depending on their genetic background, mice transgenic for the BDC2.5 T cell receptor present very different forms of insulitis. The NOD genetic background leads to a benign insulitis whereas the C57Bl/6-H2g7/g7 leads to an aggressive insulitis. We first studied how antigen-specific T cells are affected by these differences by obtaining the transcriptional profiles of BDC2.5 T cells from pancreas and pancreatic lymph nodes. We also compared the gene expression profiles of the entire leukocyte population present in the pancreatic lesion.

Publication Title

Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE3039
Innate vs. adaptive lymphocyte gene expression
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Three innate (B1-B, NKT, CD8aaT cells) and adaptive (B2-B, CD4T, CD8abT cells) cell-types were sorted by FACS. Three biological replicates for NKT, CD4T, CD8aaT, CD8abT cells and two biological replicates for B1 and B2 cells were generated and the expression profiles were determined using Affymetrix Mu74Av2 chip. Comparisons between the sample groups allow the identification of genes differentially expressed between the innate and adaptive cell-types.

Publication Title

A shared gene-expression signature in innate-like lymphocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12073
Expression data from transgenic Aire expressing pancreatic islets
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The aim of this study was to determine the effect of transgenic Aire expression on the transcriptional profile of a tissue that normally does not express Aire: pancreatic islets. The transcriptional profile of transgenic RIP-Aire27 islets was compared to non-transgenic littermate islets as well as to archival NOD thymic medullary epithelial cells (MEC) data. All data were from non-obese diabetic (NOD) mice

Publication Title

Transcriptional impact of Aire varies with cell type.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1112
RTOC thymocytes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Four independent chip hybridization with RNAs from four independent RTOC cultures.

Publication Title

Self-reactivity in thymic double-positive cells commits cells to a CD8 alpha alpha lineage with characteristics of innate immune cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP187591
Transcriptional characterization of PD-1 positive and negative Foxp3 negative CD4 positive T cells from liver of 5- and 10-day-old Aire-deficient C57BL/6 mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The first T cells to arrive in the liver were mostly T regulatory (Treg) cells and metabolically active, highly proliferative T conventional (Tconv) cells. The Tconv cells had unusually high expression of PD-1 and the IL-33 receptor, ST2. As these PD-1+ Tconv cells accumulated in the tissue, they gradually lost their expression of ST2, ceased to proliferate and acquired an anergic phenotype. Overall design: Gene expression profiles of flow cytometry sorted DAPI negative CD45 positive TCRb positive CD4 positive Foxp3 negative cells from liver of 5- and 10-day-old B6.Aire-KO mice

Publication Title

T cell anergy in perinatal mice is promoted by T reg cells and prevented by IL-33.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE7596
AKT regulates de novo induction of Foxp3
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The CD4+Foxp3+ regulatory T cells play an essential role in maintaining tolerance via their suppressive function on conventional T cells. The intracellular signaling pathways that regulate Foxp3 expression are largely unknown. In this study we describe a novel inhibitory role for AKT in regulating de novo induction of Foxp3 both in vivo and in vitro. A constitutively active allele of AKT significantly diminished TGF- induced Foxp3 induction via a rapamycin-sensitive pathway, establishing a role for the AKT-mTOR axis in Treg cells. Moreover, the observed impairment in Foxp3 induction was paralleled by a selective downmodulation of the imparted Treg transcriptional signature highlighting the importance of the balance of intracellular signals in Treg differentiation . Our results provide a basis for further elucidation of molecular mechanisms that regulate Foxp3 induction and identify AKT as an important negative regulator of this process.

Publication Title

The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact