refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 419 results
Sort by

Filters

Technology

Platform

accession-icon GSE10389
Identification of Stat5 Target Genes by siRNA-mediated knockdown
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

STAT5A and STAT5B proteins belong to the family of signal transducers and activators of transcription. They are encoded by 2 separate genes with 91% identity in their amino acid sequences. Despite their high degree of conservation, STAT5A and STAT5B exert non-redundant functions, resulting at least in part from differences in target gene activation. To better characterize the differential contribution of STAT5A and STAT5B in gene regulation, we performed single or double knock-down of STAT5A and STAT5B using small interfering RNA. Subsequent gene expression profiling and RT-qPCR analyses of IL-3-stimulated Ba/F3-beta cells led to the identification of putative novel STAT5 target genes. Chromatin immunoprecipitation assays analyzing the corresponding gene loci identified unusual STAT5 binding sites compared to conventional STAT5 responsive elements. Some of the STAT5 targets identified are upregulated in several human cancers, suggesting that they might represent potential oncogenes in STAT5-associated malignancies.

Publication Title

In vivo identification of novel STAT5 target genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041508
Localization and Abundance Analysis of Human lncRNAs at Single Cell and Single Molecule Resolution
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII, IlluminaHiSeq2000

Description

Long noncoding RNAs (lncRNAs) have emerged as key players in different cellular processes and are required for diverse functions in vivo. However, fundamental aspects of lncRNA biology remain poorly characterized, including their subcellular localization, abundance and variation at a single cell resolution. Here, we used single molecule, single-cell RNA fluorescence in situ hybridization (RNA FISH) to survey 61 lncRNAs, chosen by properties such as conservation, tissue specific expression, and expression abundance, and to catalog their abundance and cellular localization patterns in three human cell types. Our lncRNAs displayed diverse sub-cellular localization patterns ranging from strictly nuclear localization to almost exclusive cytoplasmic localization, with the majority localized primarily in the nucleus. The low abundance of these lncRNAs as measured in bulk cell populations cannot be explained by high expression in a small subset of ''jackpot'' cells. Simultaneous analysis of lncRNAs and mRNAs from corresponding divergently transcribed loci showed that divergent lncRNAs do not present a distinct localization pattern and are not always co-regulated with their neighbor. Overall, our study highlights important differences and similarities between lncRNAs and mRNAs. The rich set of localization patterns we observe are consistent with a broad range of potential functions for lncRNA, and assists in hypothesis generation for mechanistic studies. Here we provide the RNA-Seq expression matrix, as well as RNA-Seq raw data, which we used for comparison with RNA FISH molecule counts. Overall design: We estimate FPKM of coding genes and lncRNAs across HeLa, human lung fibroblasts and human foreskin. This study includes data from human foreskin fibroblasts (hFF), human lung fibroblasts (hLF), and HeLa cells. An hFF sample (GSM1376178) and the hLF samples (GSM1376175-GSM1376177) were previously submitted and are available in GSE30554 as GSM759893 and GSM759890-GSM759892, respectively. The HeLa samples (GSM591670-GSM591671) were previously submitted and are available in GSE23316. The complete dataset representing: (1) the hFF Samples, including the re-analysis of the hFF Sample from GSE30554, (2) the re-analysis of the hLF Samples from GSE30554, and (3) the re-analysis of the HeLa Samples from GSE23316, is linked below as a supplementary file.

Publication Title

Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP092481
Activity-dependent gene expression in the mammalian olfactory epithelium
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We access the activity-dependent genes in olfactory neuron cells with unilateral naris occlusion model with mouse. Overall design: mRNA profile of olfactory epithelia between closed and open sides of mice naris was compared

Publication Title

Activity-Dependent Gene Expression in the Mammalian Olfactory Epithelium.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE29368
CD140a+ human oligodendrocyte progenitor cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glial progenitor cells (GPCs) pervade the human brain. These cells express gangliosides recognized by MAb A2B5, and some but not all can generate oligodendrocytes. Since some A2B5+ GPCs express PDGFa receptor (PDGFRa), which is critical to oligodendrocyte development, we asked if PDGFRa-directed sorting might isolate oligodendrocyte-competent progenitors. We used FACS to sort PDGFRa+ cells from the second trimester fetal human forebrain, based on expression of the PDGFRa epitope CD140a. CD140a+ cells could be maintained as mitotic progenitors that could be instructed to either oligodendrocyte or astrocyte phenotype. Transplanted CD140a+ cells robustly myelinated the hypomyelinated shiverer mouse brain. Microarray confirmed that CD140a+ cells differentially expressed PDGFRA, NG2, OLIG1/2, NKX2.2 and SOX2. Some expressed CD9, thereby defining a CD140a+/CD9+ fraction of oligodendrocyte-biased progenitors. CD140a+ cells differentially expressed genes of the PTN-PTPRZ1, wnt, notch and BMP pathways, suggesting the interaction of self-renewal and fate-restricting pathways in these cells, while identifying targets for their mobilization and instruction.

Publication Title

CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP126648
Single-cell RNA-seq of mouse dopaminergic neurons informs candidate gene selection for sporadic Parkinson''s disease
  • organism-icon Mus musculus
  • sample-icon 758 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Genetic variation modulating risk of sporadic Parkinson's disease (PD) has been primarily explored through genome wide association studies (GWAS). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal timepoints. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a novel postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including known PD genes and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1 null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. Overall design: 473 single cell RNA-Seq samples from sorted mouse Th-eGFP+ dopaminergic neurons collected at two timepoints from three distinct brain regions.

Publication Title

Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE15415
Candidate genes for alcohol preference in alcohol-preferring and non-preferring reciprocal congenic rats
  • organism-icon Rattus norvegicus
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The goal of this study was to identify candidate genes that may influence alcohol consumption by comparing gene expression in 5 brain regions of alcohol-nave iP and P.NP rats.

Publication Title

Candidate genes for alcohol preference identified by expression profiling in alcohol-preferring and -nonpreferring reciprocal congenic rats.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5849
Identification of Candidate Genes for Alcohol Preference by Expression Profiling of Congenic Strains
  • organism-icon Rattus norvegicus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

A highly significant quantitative trait locus (QTL) that influenced alcohol preference was identified in the iP/iNP rats on chromosome 4.

Publication Title

Identification of candidate genes for alcohol preference by expression profiling of congenic rat strains.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP087617
Proliferation-independent regulation of organ size by Notch signaling
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Purpose: To identify genes that are transcriptionally controlled by Notch signaling during zebrafish lateral line proneuromast formation. Methods: We isolated primordium cells from dissected tails of 36 hpf Tg((cldnB:GFP);Tg(cldnB:gal4) x Tg(UAS:nicd)) and sibling Tg((cldnB:GFP);Tg(cldnB:gal4)) embryos by FACS and performed RNASeq analysis. Results: Using an optimized data analysis workflow, we mapped about 26 million sequence reads per sample to the zebrafish genome (build danRer10) and identified 32,105 transcripts in the dissociated tails of WT and NICD zebrafish with TopHat workflow. Approximately 2% of the transcripts showed differential expression between the WT and NICD tails, with a fold change =0.5 and p value <0.01. Conclusion: RNASeq analyses revealed that Notch signaling cell-autonomously induces apical constriction and cell adhesion. Overall design: Zebrafish lateral line mRNA profiles of 36 hours wild type (WT) and NICD embryos were generated in triplicate, using HiSeq 2500 (Illumina).

Publication Title

Proliferation-independent regulation of organ size by Fgf/Notch signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE101141
Amniotic fluid transcriptomics reflects novel disease mechanisms in fetuses with myelomeningocele
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify molecular pathophysiologic changes and novel disease mechanisms specific to myelomeningocele by analyzing AFS cfRNA in fetuses with open myelomeningocele.

Publication Title

Amniotic fluid transcriptomics reflects novel disease mechanisms in fetuses with myelomeningocele.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16395
Cell-Specific Gene Expression in Langerhans Cell Histiocytosis
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Langerhans-cell histiocytosis (LCH) is characterized by heterogeneous lesions containing CD207+ Langerhans cells (LCs) and lymphocytes. In this study, we isolated CD207+ cells and CD3+ T cells from LCH lesions to determine cell-specific gene expression. Compared to control epidermal CD207+ cells, the LCH CD207+ cells yielded 2113 differentially-expressed genes (FDR<0.01). Surprisingly, expression of many genes previously associated with LCH, including cell-cycle regulators, pro-inflammatory cytokines and chemokines were not significantly different from control LCs in our study. However, several novel genes whose products activate and recruit T cells to sites of inflammation, including SPP1 (osteopontin), were highly over-expressed in LCH CD207+ cells. Furthermore, several genes associated with immature myeloid dendritic cells were over-expressed in LCH CD207+ cells. Compared to the peripheral CD3+ cells from LCH patients, the LCH lesion CD3+ cells yielded only 162 differentially-regulated genes (FDR<0.01), and the expression profile of the LCH lesion CD3+ cells was consistent with an activated regulatory T cell phenotype with increased expression of FOXP3, CTLA4 as well as SPP1. Based on these results, we propose a new model of LCH pathogenesis in which lesions do not arise from epidermal Langerhans cells, but from accumulation of bone-marrow derived immature myeloid dendritic cells that recruit activated lymphocytes.

Publication Title

Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact