refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 419 results
Sort by

Filters

Technology

Platform

accession-icon GSE40545
RB pathway deregulation promotes invasion and disease progression in a mouse model of MYC-overexpressing mammary tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Breast cancer is a highly heterogeneous disease that is categorized into distinct tumor subtypes based on specific molecular attributes, which ultimately influence therapeutic options. Unlike ER+ and/or HER2+ cancers that are subject to specific targeted therapies, triple negative breast cancers (TNBCs) do not express these receptors, which leaves patients with limited treatment options. Thus, significant focus has been placed on identifying molecular attributes of basal-like disease that could be used to develop and/or direct novel treatment regimens. Activation of MYC signaling and inactivation of the RB-pathway are frequent events in many types of human cancers. These pathways influence many biological processes, such as cell proliferation, that contribute to the aggressiveness and therapeutic response of tumors. The current study examines the interaction of the MYC and RB pathways in mammary epithelial cell tumorigenesis.

Publication Title

RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE148325
Expression data for C. elegans blunt force trauma
  • organism-icon Caenorhabditis elegans
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

C. elegans exhibit an age-dependent mechanical stress response to blunt force injury.

Publication Title

Trauma-induced regulation of VHP-1 modulates the cellular response to mechanical stress.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE31169
Transcriptional profiling of liver tissue from mice with wild-type, N750F mutant or exon 19 deleted RB1, after treatment with diethylnitrosamine.
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The LXCXE peptide motif facilitates interaction between the RB tumor suppressor and a large number of cellular proteins that are expected to impinge on diverse biological processes. In vitro and in vivo analyses demonstrated that LXCXE-binding function is dispensable for RB promoter association and control of basal gene expression. Dependence on this function of RB is unmasked after DNA damage, wherein LXCXE-binding is essential for exerting control over E2F3 and suppressing cell cycle progression in the presence of genotoxic stress. Gene expression profiling revealed that the transcriptional program coordinated by this specific aspect of RB is associated with progression of human hepatocellular carcinoma and poor disease outcome. Consistent with these findings, biological challenge revealed a requirement for LXCXE-binding in suppression of genotoxin-initiated hepatocellular carcinoma in vivo. Together, these studies establish an essential role of the LXCXE-binding motif for RB-mediated transcriptional control, response to genotoxic insult, and tumor suppression.

Publication Title

RB restricts DNA damage-initiated tumorigenesis through an LXCXE-dependent mechanism of transcriptional control.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP074754
Caenorhabditis elegans Raw sequence reads
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mapping the transcriptomes governed by TCER-1 and DAF-16 upon germline loss

Publication Title

DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans.

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line

View Samples
accession-icon SRP092481
Activity-dependent gene expression in the mammalian olfactory epithelium
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We access the activity-dependent genes in olfactory neuron cells with unilateral naris occlusion model with mouse. Overall design: mRNA profile of olfactory epithelia between closed and open sides of mice naris was compared

Publication Title

Activity-Dependent Gene Expression in the Mammalian Olfactory Epithelium.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE66792
Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BCRABL1+ precursor B-cell acute lymphoblastic leukemia (BCR ABL1+ B-ALL) is an aggressive hematopoietic neoplasm characterized by a block in differentiation due in part to the somatic loss of transcription factors required for B-cell development. We hypothesized that overcoming this differentiation block by forcing cells to reprogram to the myeloid lineage would reduce the leukemogenicity of these cells. We found that primary human BCRABL1+ B-ALL cells could be induced to reprogram into macrophage-like cells by exposure to myeloid differentiation-promoting cytokines in vitro or by transient expression of the myeloid transcription factor C/EBP or PU.1. The resultant cells were clonally related to the primary leukemic blasts but resembled normal macrophages in appearance, immunophenotype, gene expression, and function. Most importantly, these macrophage-like cells were unable to establish disease in xenograft hosts, indicating that lineage reprogramming eliminates the leukemogenicity of BCRABL1+ B-ALL cells, and suggesting a previously unidentified therapeutic strategy for this disease. Finally, we determined that myeloid reprogramming may occur to some degree in human patients by identifying primary CD14+ monocytes/ macrophages in BCRABL1+ B-ALL patient samples that possess the BCRABL1+ translocation and clonally recombined VDJ regions.

Publication Title

Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP126648
Single-cell RNA-seq of mouse dopaminergic neurons informs candidate gene selection for sporadic Parkinson''s disease
  • organism-icon Mus musculus
  • sample-icon 758 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Genetic variation modulating risk of sporadic Parkinson's disease (PD) has been primarily explored through genome wide association studies (GWAS). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal timepoints. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a novel postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including known PD genes and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1 null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. Overall design: 473 single cell RNA-Seq samples from sorted mouse Th-eGFP+ dopaminergic neurons collected at two timepoints from three distinct brain regions.

Publication Title

Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE15415
Candidate genes for alcohol preference in alcohol-preferring and non-preferring reciprocal congenic rats
  • organism-icon Rattus norvegicus
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The goal of this study was to identify candidate genes that may influence alcohol consumption by comparing gene expression in 5 brain regions of alcohol-nave iP and P.NP rats.

Publication Title

Candidate genes for alcohol preference identified by expression profiling in alcohol-preferring and -nonpreferring reciprocal congenic rats.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5849
Identification of Candidate Genes for Alcohol Preference by Expression Profiling of Congenic Strains
  • organism-icon Rattus norvegicus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

A highly significant quantitative trait locus (QTL) that influenced alcohol preference was identified in the iP/iNP rats on chromosome 4.

Publication Title

Identification of candidate genes for alcohol preference by expression profiling of congenic rat strains.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17951
Gene expression analysis of prostate cancer samples using Affymetrix U133Plus2 array
  • organism-icon Homo sapiens
  • sample-icon 153 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Over one million prostate biopsies are performed in the U.S. every year. However, pathology examination is not definitive in a significant percentage of cases due limited diagnostic tumor. We have observed that the microenvironment of prostate tumor cells exhibits numerous differential gene expression changes and have asked whether such information can be used to distinguish tumor from nontumor. We initially compared expression analysis data (Affymetrix U133plus2) from 18 volunteer biopsy specimens to 17 specimens containing largely tumor-adjacent stroma and identified 964 significant (p_adj < 0.01 and B > 0) expression changes. These genes were filtered to eliminate possible aging-related genes and genes expressed in tumor cells > 10% of the stroma cell expression level leading to 23 candidate genes (28 Affymetrix probe sets). A classifier based on the 28 probe sets was tested on 289 independent cases, including 195 tumor-bearing cases, 99 nontumor cases (normal biopsies, normal autopsies, remote stroma as well as pure tumor adjacent stroma) all with accuracies >85%, sensitivities >90% and specificities >85%. These results indicate that the prostate cancer microenvironment exhibits reproducible changes useful for categorization as tumor and nontumor.

Publication Title

In silico estimates of tissue components in surgical samples based on expression profiling data.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact