refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 170 results
Sort by

Filters

Technology

Platform

accession-icon GSE112798
Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Samples of primary tumors collected from 23 ovarian cancer patients

Publication Title

Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon SRP049815
RNA-seq analysis of differences in gene expression between dorsal and ventral MEC
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Neural circuits in the medial entorhinal cortex (MEC) encode an animal’s position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations. Overall design: Examination of dorsal and ventral regions from 4 replicate samples each containing pooled data from 3-4 mice

Publication Title

Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP131305
Rat Rotator Cuff Tear RNASeq
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Myosteatosis is the pathological accumulation of lipid that occurs in conjunction with atrophy and fibrosis following skeletal muscle injury or disease. Little is known about the mechanisms by which lipid accumulates in myosteatosis, but many studies have demonstrated the degree of lipid infiltration negatively correlates with muscle function and regeneration. Our goal was to identify biochemical pathways that lead to muscle dysfunction and lipid accumulation in injured rotator cuff muscles, a model that demonstrates severe myosteatosis. Adult rats were subjected to a massive tear to the rotator cuff musculature. After a period of either 0 (healthy control), 10, 30, or 60 days, muscles were prepared for RNA sequencing, shotgun lipidomics, metabolomics, biochemical measures, electron microscopy, and muscle fiber contractility. Following rotator cuff injury, there was a decrease in muscle fiber specific force production that was lowest at 30d. There was a dramatic time dependent increase in triacylglyceride content. Interestingly, genes related to not only triacylglyceride synthesis, but also lipid oxidation were largely downregulated over time. Using bioinformatics techniques, we identified that biochemical pathways related to mitochondrial dysfunction and reactive oxygen species were considerably increased in muscles with myosteatosis. Long chain acyl-carnitines and L-carnitine, precursors to beta-oxidation, were depleted following rotator cuff tear. Electron micrographs showed injured muscles displayed large lipid droplets within mitochondria at early time points, and an accumulation of peripheral segment mitochondria at all time points. Several markers of oxidative stress were elevated following rotator cuff tear. The results from this study suggest that the accumulation of lipid in myosteatosis is not a result of canonical lipid synthesis, but occurs due to decreased lipid oxidation in mitochondria. A failure in lipid utilization by mitochondria would ultimately cause an accumulation of lipid even in the absence of increased synthesis. Further study will identify whether this process is required for the onset of myosteatosis. Overall design: Rats were subjected to a bilateral full-thickness supraspinatus tear and suprascapular neurectomy. Samples (N=4 per group) were taken at 0 days (unoperated controls), 10 days, 30 days, and 60 days post-injury

Publication Title

Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE98757
Dysregulated Signalling leads to altered cell migration: an oncogenic basis for the development of CCSK
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

The oncogenic mechanisms and tumour biology underpinning Clear Cell Sarcoma of Kidney (CCSK), the second commonest paediatric renal malignancy, are poorly understood and currently therapy depends heavily on Doxorubicin with cardiotoxic side-effects. Previously, we characterised the balanced t(10;17)(q22;p13) chromosomal translocation, identified at that time as the only recurrent genetic aberration in CCSK. This translocation results in an in-frame fusion of the YWHAE (encoding 14-3-3e) and NUTM2 genes, with a somatic incidence of 12%. Clinico-pathological features of that cohort suggested that this aberration might be associated with higher stage and grade disease. Since no primary CCSK cell line exists, we generated various stably transfected cell lines containing doxycycline-inducible HA-tagged-YWHAE-NUTM2, in order to study the effect of expressing this transcript. 14-3-3e-NUTM2-expressing cells exhibited significantly greater cell migration compared to mock-treated controls. Gene and protein expression studies conducted in parallel on this model system suggested dysregulation of signalling pathways as a basis to the migration changes. Importantly, by blocking these signalling pathways using anti-EGFR, anti-IGF1R and anti-PDGFa neutralising antibodies, the migratory advantage conferred by transcript expression was abrogated. These results support 14-3-3e-NUTM2 expression as a contributor to CCSK tumorigenesis and provide avenues for the exploration of novel therapeutic approaches in CCSK.

Publication Title

Dysregulated mitogen-activated protein kinase signalling as an oncogenic basis for clear cell sarcoma of the kidney.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE12333
Retinoic Acid Delivery within Embryoid Bodies Induces an Early Streak Phenotype in vitro
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

During embryogenesis, cell specification and tissue formation is directed by the concentration and temporal presentation of morphogens, and similarly, pluripotent embryonic stem cells differentiate in vitro into various phenotypes in response to morphogen treatment. Embryonic stem cells are commonly differentiated as three dimensional spheroids called embryoid bodies (EBs); however, differentiation within EBs is typically heterogeneous and disordered. Here we show that spatiotemporal control of microenvironmental cues embedded directly within EBs enhances the homogeneity, synchrony and organization of differentiation. Degradable polymer microspheres releasing retinoic acid within EBs induce the formation of cystic spheroids closely resembling the early streak mouse embryo, with an exterior of visceral endoderm enveloping an epiblast layer. These results demonstrate that controlled morphogen presentation to stem cells more efficiently directs cell differentiation and tissue formation, thereby improving developmental biology models and enabling the development of regenerative medicine therapies and cell diagnostics.

Publication Title

Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5999
Characterization of Gene Expression At the Human Maternal-Fetal Interface
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Microarray analysis to globally assess gene expression at the maternal-fetal interface

Publication Title

Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56973
Functional and evolutionary significance of human microRNA seed region mutations
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Functional and evolutionary significance of human microRNA seed region mutations.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP067173
HSB-2 cells stably expressing LDB1 or mutant LDB1 proteins
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

LMO2 is a component of multisubunit DNA-binding transcription factor complexes that regulate gene expression in hematopoietic stem and progenitor cell development. Enforced expression of LMO2 causes leukemia by inducing hematopoietic stem cell-like features in T-cell progenitor cells, but the biochemical mechanisms of LMO2 function have not been fully elucidated. In this study we systematically dissected the LMO2/LDB1 binding interface to investigate the role of this interaction in T-cell leukemia. Alanine scanning mutagenesis of the LIM interaction domain of LDB1 revealed a discrete motif R320LITR required for LMO2 binding. Most strikingly, co-expression of full length, wild type LDB1 increased LMO2 steady state abundance, whereas co-expression of mutant proteins deficient in LMO2 binding compromised LMO2 stability. These mutant LDB1 proteins also exerted dominant negative effects on growth and transcription in diverse leukemic cell lines. Raw gene expression data on HSB-2 cells is presented here. Overall design: RNAseq were performed on HSB cell lines to examine their expression patterns

Publication Title

LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61230
Functional and evolutionary significance of human microRNA seed region mutations [M14]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the regulation of gene expression at the post transcriptional and/or translational level thus impacting various biological processes. Dysregulation of miRNAs could affect processes associated with progression of a variety of diseases including cancer. Majority of miRNA targeting in animals involves a 7-nt seed region mapping to positions 2-8 at the molecules 5' end. The importance of this 7 nt sequence to miRNA function is evidenced by the fact that the seed region sequence of many miRNAs is highly conserved within and between species. In this study, we computationally and experimentally explore the functional significance of sequence variation within the seed region of human miRNAs. Our results indicate that change of a single nt within the 7-nt seed region changes the spectrum of targeted mRNAs significantly meanwhile further nt changes have little to no additional effect. This high functional cost of even a single nucleotide change within the seed region of miRNAs explains why the seed sequence is highly conserved among many miRNA families both within and between species and could help clarify the likely mechanisms underlying the evolution of miRNA regulatory control.

Publication Title

Functional and evolutionary significance of human microRNA seed region mutations.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE61229
Functional and evolutionary significance of human microRNA seed region mutations [M5]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the regulation of gene expression at the post transcriptional and/or translational level thus impacting various biological processes. Dysregulation of miRNAs could affect processes associated with progression of a variety of diseases including cancer. Majority of miRNA targeting in animals involves a 7-nt seed region mapping to positions 2-8 at the molecules 5' end. The importance of this 7 nt sequence to miRNA function is evidenced by the fact that the seed region sequence of many miRNAs is highly conserved within and between species. In this study, we computationally and experimentally explore the functional significance of sequence variation within the seed region of human miRNAs. Our results indicate that change of a single nt within the 7-nt seed region changes the spectrum of targeted mRNAs significantly meanwhile further nt changes have little to no additional effect. This high functional cost of even a single nucleotide change within the seed region of miRNAs explains why the seed sequence is highly conserved among many miRNA families both within and between species and could help clarify the likely mechanisms underlying the evolution of miRNA regulatory control.

Publication Title

Functional and evolutionary significance of human microRNA seed region mutations.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact