refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1395 results
Sort by

Filters

Technology

Platform

accession-icon GSE12685
Expression of mRNAs Regulating Synaptic Function and Neuroplasticity in Incipient AD
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

In Alzheimers disease (AD), early deficits in learning and memory are a consequence of synaptic modification which are likely induced by toxic beta-amyloid oligomers (oA). To identify molecular targets downstream of oA binding we prepared synaptoneurosomes from frontal cortex of control and IAD patients, and isolated mRNAs for comparison of gene expression. This approach elevated synaptic mRNAs above the threshold necessary for expression changes to be discriminated and also reduced other cellular mRNAs. In patients with minimal cognitive impairment (MCI) termed incipient AD (IAD) global measures of cognition declined with increasing levels of dimeric A (dA). These patients also showed increased expression of neuroplasticity related genes, many encoding 3' UTR consensus sequences that regulate local translation in the synapse. One such gene, GluR2, displayed elevated mRNA and protein expression in IAD. Other neurotransmitter-related genes were also upregulated. Overexpressed genes may induce compensatory as well as negative effects on cognition and provide targets for intervention to moderate the response to dA.

Publication Title

Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer's disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3325
Integrative Genomic and Proteomic Analysis of Prostate Cancer Reveals Signatures of Metastatic Progression
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An integrative analysis of this compendium of proteomic alterations and transcriptomic data was performed revealing only 48-64% concordance between protein and transcript levels. Importantly, differential proteomic alterations between metastatic and clinically localized prostate cancer that mapped concordantly to gene transcripts served as predictors of clinical outcome in prostate cancer as well as other solid tumors.

Publication Title

Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP139926
Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cutaneous T-cell lymphoma (CTCL) develops from clonally expanded CD4+ T cells in a background of chronic inflammation. Dendritic cells (DCs) are potent T-cell stimulators; yet despite DCs' extensive presence in skin, cutaneous T cells in CTCL do not respond with effective anti-tumor immunity. We evaluated primary T-cell and DC émigrés from epidermal and dermal explant cultures of skin biopsies from CTCL patients (n = 37) and healthy donors (n = 5). Compared with healthy skin, CD4+ CTCL populations contained more T cells expressing PD-1, CTLA-4, and LAG-3; and CD8+ CTCL populations comprised more T cells expressing CTLA-4 and LAG-3. CTCL populations also contained more T cells expressing the inducible T-cell costimulator (ICOS), a marker of T-cell activation. DC émigrés from healthy or CTCL skin biopsies expressed PD-L1, indicating that maturation during migration resulted in PD-L1 expression irrespective of disease. Most T cells did not express PD-L1. Using skin samples from 49 additional CTCL patients for an unsupervised analysis of genome-wide mRNA expression profiles corroborated that advanced T3/T4 stage samples expressed higher levels of checkpoint inhibition genes compared with T1/T2 stage patients or healthy controls. Exhaustion of activated T cells is therefore a hallmark of both CD4+ and CD8+ T cells directly isolated from the lesional skin of patients with CTCL, with a continuum of increasing expression in more advanced stages of disease. These results justify identification of antigens driving T-cell exhaustion and the evaluation of immune checkpoint inhibition to reverse T-cell exhaustion earlier in the treatment of CTCL. Overall design: RNA-seq correlated with tumor stages

Publication Title

Primary T Cells from Cutaneous T-cell Lymphoma Skin Explants Display an Exhausted Immune Checkpoint Profile.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon SRP052034
Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Direct conversion of somatic cells into neural stem cells (NSCs) by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. Additionally, the single seeded induced NSCs were able to form NSC colonies with efficiency comparable to control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating and attaining neural phenotypes after transplantation into neonatal mouse- and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts. Overall design: RNA-Seq of 3 replicates each of iNSC, WT-NSC, and HNF

Publication Title

Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE105132
Differential gene expression in TREM1 -/- vs +/+ myeloid cells 48h after MCAo-RP
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Stroke is a multiphasic progress characterized by neuron damage due to hypoxia followed by secondary damage from the subsequent inflammatory immune response. Infiltrating myeloid cells induce cerebral damage through pro-inflammatory cytokines, chemokines, proteases and generation of reactive oxygen species (ROS).

Publication Title

Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8717
Expression data from Human MPNST cancer cells infected with G207 and oncolytic HSV
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to identify genes regulated during oncolytic HSV infection. Oncolytic herpes simplex viruses (oHSV) are promising anticancer therapeutics. We sought to identify alterations in gene expression during oHSV infection of human cancer cells. Human malignant peripheral nerve sheath tumor (MPNST) cells were infected with G207, an ICP34.5-deleted oHSV previously evaluated in clinical trials. G207-infected cells demonstrated massive degradation of cellular mRNAs, while a subset were upregulated. A gene signature of 21 oHSV-induced genes contained 7 genes known to be HSV-induced. Go ontology classification revealed that a majority of upregulated genes are involved in Jak/STAT signaling, transcriptional regulation, nucleic acid metabolism, protein synthesis and apoptosis. Ingenuity-defined functional networks highlighted nodes for AP-1 subunits and interferon signaling via STAT1, SOCS1, SOCS3 and RANTES. Upregulation of SOCS1 correlated with sensitivity of MPNST lines to G207 and depletion of SOCS1 reduced virus replication >1-log. The transcriptome of oHSV-induced genes may predict oncolytic efficacy and provides rationale for next generation oncolytics.

Publication Title

Molecular analysis of human cancer cells infected by an oncolytic HSV-1 reveals multiple upregulated cellular genes and a role for SOCS1 in virus replication.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7164
Identification of novel genes expressed during mouse molar tooth development by microarray gene expression analysis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify genes heretofore undiscovered as critical players in the biogenesis of teeth, we have used microarray gene expression analysis of the developing mouse molar tooth (DMT) between 1 and 10 days postnatal to identify genes differentially expressed when compared to 16 control tissues (GEO accession # GSE1986). Of the top 100 genes exhibiting increased expression in the DMT, 29 were found to have been previously associated with tooth development. Differential expression of the remaining 71 genes not previously associated with tooth development was confirmed by qRT-PCR analysis. Further analysis of seven of the latter genes by mRNA in situ hybridization found that five were specific to the developing tooth in the craniofacial region (Rspo4, Papln, Amtn, Gja1, Maf). Of the remaining two, one was found to be more widely expressed (Sp7) and the other was found to be specific to the nasal serous gland, which is close to, but distinct from, the developing tooth (Vrm).

Publication Title

Identification of novel genes expressed during mouse tooth development by microarray gene expression analysis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE13681
Genome wide analysis of gene expression of rat ES cells, rat embryonic fibroblast cells and mouse ES cells
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Rat ES cells were derived using 3I medium from E4.5 blastocysts. Rat embryonic fibroblast cells were derived form E14.5 embryos. To analyze the mechanism under the selfrenewal of rat ES cells, microarrays were used for the genome wide analysis of gene expressoin profiles in rat ES cells. Rat embryonic fibroblast cells and mouse ES cells were tested at same time as control. Our results from clustering analysis demonstrated that the gene expression profile of rat ES cells resembles mouse ES cells, but not REFs.

Publication Title

Germline competent embryonic stem cells derived from rat blastocysts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19449
Doxorubicin resistance in a novel in vitro model of human pleomorphic liposarcoma associated with ALT
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Soft tissue sarcomas are a diverse set of fatal human tumors where few agents have demonstrable clinical efficacy, with the standard therapeutic combination of doxorubicin and ifosfamide showing only a 25-30% response rate in large multi-institutional trials. Although liposarcomas are the most common histological form of adult soft tissue sarcomas, research in this area is severely hampered by the lack of experimentally tractable in vitro model systems. To this end, here we describe a novel in vitro model for human pleomorphic liposarcoma. The cell line (LS2) is derived from a pleomorphic liposarcoma that utilizes Alternative Lengthening of Telomeres (ALT) mechanism of telomere maintenance, which may be particularly important in modulating the response of this tumor type to DNA damaging agents. We present detailed baseline molecular and genomic data, including genome wide copy number and transcriptome profiles, for this model compared to its parental tumor and a panel of liposarcomas covering multiple histologies. The model has retained essentially all of the detectable alterations in copy number that are seen in the parental tumor, and shows molecular karyotypic and expression profiles consistent with pleomorphic liposarcomas. We also demonstrate the utility of this model, together with two additional human liposarcoma cell lines, to investigate the relationship between topoisomerase 2A expression and the sensitivity of ALT-positive liposarcomas to doxorubicin. This model, together with its associated baseline data, provide a powerful new tool to develop treatments for this clinically poorly-tractable tumor, and to investigate the contribution that ALT makes to modulating sensitivity to DNA damaging chemotherapeutic agents such as doxorubicin.

Publication Title

Doxorubicin resistance in a novel in vitro model of human pleomorphic liposarcoma associated with alternative lengthening of telomeres.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE20559
Gene expression signature reflects differentiation differences rather than telomere maintenance mechanism
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A gene expression signature purporting to distinguish between telomerase and ALT immortalization has recently been described (Lafferty-Whyte et al., 2009). This was obtained as the intersection of two independent signatures, one obtained from cell lines and the other from a panel of liposarcomas, which utilize different telomere maintenance mechanisms (TMMs). To assess the utility of this signature we used Affymetrix U133plus2.0 arrays to undertake a similar analysis of an independent collection of liposarcomas of defined TMM. In our dataset, the 297 gene signature causes the liposarcomas to cluster not on the basis of TMM, but rather on the basis of tumor histological subtype [Figure 1], consistent with the signatures reported by others (Matushansky et al., 2008).

Publication Title

Validating a gene expression signature proposed to differentiate liposarcomas that use different telomere maintenance mechanisms.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact