refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 880 results
Sort by

Filters

Technology

Platform

accession-icon GSE32467
Expression data from wildtype and unc-37 mutant A-class motor neurons in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

In Caenorhabditis elegans, VA and VB motor neurons arise as lineal sisters but synapse with different interneurons to regulate locomotion. VA-specific inputs are defined by the UNC-4 homeoprotein and its transcriptional corepressor, UNC-37/Groucho, which function in the VAs to block the creation of chemical synapses and gap junctions with interneurons normally reserved for VBs. To reveal downstream genes that control this choice, we have employed a cell-specific microarray strategy that has now identified unc-4-regulated transcripts. One of these genes, ceh-12, a member of the HB9 family of homeoproteins, is normally restricted to VBs. We show that expression of CEH-12/HB9 in VA motor neurons in unc-4 mutants imposes VB-type inputs. Thus, this work reveals a developmental switch in which motor neuron input is defined by differential expression of transcription factors that select alternative presynaptic partners. The conservation of UNC-4, HB9, and Groucho expression in the vertebrate motor circuit argues that similar mechanisms may regulate synaptic specificity in the spinal cord.

Publication Title

UNC-4 represses CEH-12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8004
Cell-specific microarray profiling of the C. elegans nervous system.
  • organism-icon Caenorhabditis elegans
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Background: With its fully sequenced genome and simple, well-defined nervous system, the nematode C. elegans offers a unique opportunity to correlate gene expression with neuronal differentiation. The lineal origin, cellular morphology and synaptic connectivity of each of the 302 neurons are known. In many instances, specific behaviors can be attributed to particular neurons or circuits. Here we describe microarray-based methods that monitor gene expression in C. elegans neurons and thereby link comprehensive profiles of neuronal transcription to key developmental and functional attributes of the nervous system. Results: We employed complementary microarray-based strategies to profile gene expression in the embryonic and larval nervous systems. In the MAPCeL (Micro-Array Profiling C. elegans Cells) method, we used Fluorescence Activated Cell Sorting (FACS) to isolate GFP-tagged embryonic neurons for microarray analysis. To profile the larval nervous system, we used the mRNA-tagging technique in which an epitope-labeled mRNA binding protein (FLAG-PAB-1) was transgenically expressed in neurons for immunoprecipitation of cell-specific transcripts. These combined approaches identified approximately 2,500 mRNAs that are highly enriched in either the embryonic or larval C. elegans nervous system. These data are validated in part by the detection of gene classes (e.g. transcription factors, ion channels, synaptic vesicle components) with established roles in neuronal development or function. In addition to utilizing these profiling approaches to define stage specific gene expression, we also applied the mRNA-tagging method to fingerprint a specific neuron type, the A-class group of cholinergic motor neurons, during early larval development. A comparison of these data to a MAPCeL profile of embryonic A-class motor neurons identified genes with common functions in both types of A-class motor neurons as well as transcripts with roles specific to each motor neuron type.

Publication Title

Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE71618
Expression data from DD neurons isolated from early L1 stage C. elegans larvae.
  • organism-icon Caenorhabditis elegans
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Six DD class GABAergic neurons are generated in the embryo to synapse with ventral muscles and receive input from cholinergic neurons in the dorsal nerve cord. After hatching and toward the end of the first larval (L1) stage, DD neurons reverse polarity (i.e., synapse with dorsal muscles, receive ventral cholinergic inputs). Expression profiles were generated from DD neurons in the early L1 stage before the initiation of the remodeling program.

Publication Title

Transcriptional Control of Synaptic Remodeling through Regulated Expression of an Immunoglobulin Superfamily Protein.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21162
Expression data from the PVD and OLL neurons in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Nociceptive neurons develop a complex dendritic arbor to sense noxious stimuli, which enables animals to react to environmental insults and perform self-protective behaviours. The genetic programs controlling neuronal dendritic morphogenesis are poorly understood. In C. elegans, the PVD sensory neuron generates a complex dendritic arbor that envelops the body of the animal. This nociceptive neuron enables study of dendrite formation in vivo.

Publication Title

Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5180
Gene expression in aortic aneurysms associated with tricuspid and bicuspid valves
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Patients with bicuspid aortic valve (BAV) have increased risk of thoracic ascending aortic aneurysm (AscAA) and dissection compared to those with a normal tricuspid aortic valve (TAV). The present study was undertaken to evaluate whether differences in gene expression exist in aortas from BAV and TAV patients with AscAA.

Publication Title

Elevated expressions of osteopontin and tenascin C in ascending aortic aneurysms are associated with trileaflet aortic valves as compared with bicuspid aortic valves.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8462
The embryonic muscle transcriptome of Caenorhabditis elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Background: The force generating mechanism of muscle is evolutionarily ancient; the fundamental structural and functional components of the sarcomere are common to motile animals throughout phylogeny. Recent evidence suggests that the transcription factors that regulate muscle development are also conserved. Thus, a comprehensive description of muscle gene expression in a simple model organism should define a basic muscle transcriptome that is also expressed in animals with more complex body plans. To this end, we have applied Micro-Array Profiling of Caenorhabditis elegans Cells (MAPCeL) to muscle cell populations extracted from developing Caenorhabditis elegans embryos. Results: Fluorescence Activated Cell Sorting (FACS) was used to isolate myo-3::GFP-positive muscle cells, and their cultured derivatives, from dissociated early Caenorhabditis elegans embryos. Microarray analysis identified 6,693 expressed genes, 1,305 of which are enriched in the myo-3::GFP positive cell population relative to the average embryonic cell. The muscle-enriched gene set was validated by comparisons to known muscle markers, independently derived expression data, and GFP reporters in transgenic strains. These results confirm the utility of MAPCeL for cell type-specific expression profiling and reveal that 60% of these transcripts have human homologs.

Publication Title

The embryonic muscle transcriptome of Caenorhabditis elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8231
The embryonic muscle transcriptome of C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Background:

Publication Title

The embryonic muscle transcriptome of Caenorhabditis elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9485
cRNA amplification methods enhance microarray identification of transcripts expressed in the nervous system
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Background: DNA microarrays provide a powerful method for global analysis of gene expression. The application of this technology to specific cell types and tissues, however, is typically limited by small amounts of available mRNA, thereby necessitating amplification. Here we compare microarray results obtained with two different methods of RNA amplification to profile gene expression in the C. elegans larval nervous system. Results: We used the mRNA-tagging strategy to isolate transcripts specifically from C. elegans larval neurons. The WT-Ovation Pico System (WT-Pico) was used to amplify 2 ng of Pan-neural RNA to produce labeled cDNA for microarray analysis. These WT-Pico-derived data were compared to microarray results obtained with a labeled aRNA target generated by two rounds of In Vitro Transcription (IVT) of 25 ng of Pan-neural RNA. WT-Pico results in a higher fraction of Present calls than IVT, a finding consistent with the proposal that DNA-DNA hybridization results in lower mismatch signals than the RNA-DNA heteroduplexes produced by IVT amplification. Microarray data sets from these samples were compared to a Reference profile of all larval cells to identify transcripts with elevated expression in neurons. These results were validated by the high proportion of known neuron-expressed genes detected in these profiles and by promoter-GFP constructs for previously uncharacterized genes in these data sets. Together, the IVT and WT-Pico methods identified 2,173 unique neuron-enriched transcripts. Only about half of these transcripts (1,044), however, are detected as enriched by both IVT and WT-Pico amplification.

Publication Title

Complementary RNA amplification methods enhance microarray identification of transcripts expressed in the C. elegans nervous system.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8159
A gene expression fingerprint of C. elegans embryonic motor neurons.
  • organism-icon Caenorhabditis elegans
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Background: Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo. Results: Fluorescence Activated Cell Sorting (FACS) was used to isolate unc-4::GFP neurons from primary cultures of C. elegans embryonic cells. Microarray experiments detected 6,217 unique transcripts of which ~1,000 are enriched in unc-4::GFP neurons relative to the average nematode embryonic cell. The reliability of these data was validated by the detection of known cell-specific transcripts and by expression in UNC-4 motor neurons of GFP reporters derived from the enriched data set. In addition to genes involved in neurotransmitter packaging and release, the microarray data include transcripts for receptors to a remarkably wide variety of signaling molecules. The added presence of a robust array of G-protein pathway components is indicative of complex and highly integrated mechanisms for modulating motor neuron activity. Over half of the enriched genes (537) have human homologs, a finding that could reflect substantial overlap with the gene expression repertoire of mammalian motor neurons.

Publication Title

A gene expression fingerprint of C. elegans embryonic motor neurons.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40972
EZH2 Inhibition as a Therapeutic Strategy for Lymphoma with EZH2 Activating Mutations
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact