refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 491 results
Sort by

Filters

Technology

Platform

accession-icon GSE11542
Expression data from rat mixed tissues samples
  • organism-icon Rattus norvegicus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

To evaluate gene expression changes in mixed tissue samples used as process controls in male Sprague Dawley rats over time.

Publication Title

Assessment of repeated microarray experiments using mixed tissue RNA reference samples.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP071313
Analysis of differential gene expression in Drosophila dIME4 null mutants [single-end]
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Methylation of mRNA at the N6 position of adenosin is known for a long time, but its function remains poorly understood. Here generated a null mutant in the catalytic subunit of the m6A mRNA methylosome, dIME4, in Drosophila to determine the impact of loss of m6A on gene expression using Illumina sequencing. Overall design: Since dIME4 is preferentially expressed in the nervous system and dIME4 null mutants are viable, we compared gene expression and alternative splicing in wild type (2 samples) and dIME4 mutants (3 samples) with genetic background matched w control females in neuron enriched head/thorax.

Publication Title

m<sup>6</sup>A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP071302
Analysis of differential gene expression in Drosophila dIME4 null mutants [paired-end]
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Methylation of mRNA at the N6 position of adenosin is known for a long time, but its function remains poorly understood. Here generated a null mutant in the catalytic subunit of the m6A mRNA methylosome, dIME4, in Drosophila to determine the impact of loss of m6A on gene expression using Illumina sequencing. Overall design: Since dIME4 is preferentially expressed in the nervous system and dIME4 null mutants are viable, we compared gene expression and alternative splicing in wild type (2 samples) and dIME4 mutants (3 samples) with genetic background matched w control females in neuron enriched head/thorax.

Publication Title

m<sup>6</sup>A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE37892
A seven-gene signature aggregates a subgroup of stage II colon cancers with stage III.
  • organism-icon Homo sapiens
  • sample-icon 128 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Colorectal cancer is one of the most common cancers in the world. Histological staging is efficient but combination with molecular markers may improve tumors classification. Gene expression profiles have been defined as prognosis predictors among stage II and III tumors but their implementation in medical practice remains controversial. Stage-II tumors have been recognized as a heterogeneous group and high-risk morphologic features have been retained as justifying adjuvant chemotherapy. We propose here the investigation of clinical features and expression profiles from stage II and stage III colon carcinomas without DNA mismatch repair defect. A series of 130 colon cancer samples was retained. Expression profiles were established on oligonucleotide microarrays and processed in the R/Bioconductor environment. Hierarchical then supervised analyses were successively performed applying the data-sampling approach. A molecular signature of seven genes was found to cluster stage III tumors with an adjusted p-values lower than 10^-10. A subgroup of stage-II tumors aggregated this cluster in both series. No correlation was found between with the disease severity but the function of the discriminating genes suggests that tumors have been classified according to their putative response to adjuvant targeted or classic therapies. Further pharmacogenetic studies might document this observation.

Publication Title

A seven-gene signature aggregates a subgroup of stage II colon cancers with stage III.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE26906
APC colon stage II
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of expression profiles in stage II colon cancer according to the APC gene status

Publication Title

Expression Profiles in Stage II Colon Cancer According to APC Gene Status.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE7805
affy_fertility_chicken_exp169
  • organism-icon Gallus gallus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

The aim of this study was to assess the impact of oocyte competence on subsequent fertility. Based on knowledge already accessible in mammals and on bioinformatics tools including the chicken genome sequence, we focused on the expression of genes involved in the processes of fertilization and of early embryo development.

Publication Title

Search for the genes involved in oocyte maturation and early embryo development in the hen.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15080
SOX2 is a new oncogene activated by the recurrent 3q26.3 amplifications in lung Squamous Cell Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE112485
Microarray expression data from FVB mice with induced hepatoblastoma (liver tumors)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Hepatoblastoma (HB) is the most common pediatric liver tumor, and there are no targeted therapies available for children with HB. We have previously developed a murine model of HB which is driven by coactivation of the oncogenes YAP1 and -catenin (CTNNB1) [Tao J, Calvisi D, Ranganathan S, et al. Gastroenterology, 2014 Sep; 147(3): 690701]. We used the Sleeping Beauty transposase system combined with hydrodynamic tail vein injection to deliver plasmids containing mutant activated forms of YAP1 (YAP S127A) and -catenin (N90 -catenin) to a small number of pericentral hepatocytes. We have shown that these few transformed hepatocytes proliferate and dedifferentiate, eventually forming histologically heterogeneous tumors that resemble various subtypes of human HB (which is also highly heterogeneous), including areas of well-differentiated fetal, crowded fetal, embryonal, and blastemal HB. Our goal was to investigate how coactivation of YAP1 and -catenin drive the dedifferentiation of hepatocytes into hepatoblast-like tumor cells over time, leading to HB tumors. In order to measure changes in gene expression during tumorigenesis in our model, we used an Affymetrix microarray to analyze isolated RNA from wild type FVB mouse livers, mouse HB tumor tissue, and non-tumor liver tissue adjacent to HB tumors.

Publication Title

Hepatocyte-Derived Lipocalin 2 Is a Potential Serum Biomarker Reflecting Tumor Burden in Hepatoblastoma.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE14883
SOX2 overexpression effect on human lung squamous cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have identified SOX2 as a new oncogene and a likely driver of recurrent 3q26.3 amplifications in lung Squamous Cell Carcinoma. SOX2 is a crucial transcription factor implicated in Embryonic and Neural Stem Cells, that we found widely activatd in human lung SCC. This part of the study aimed at analyzing the transcriptomic consequences of SOX2 overexpression in a simple in vitro model (human lung squamous immortalized cells).

Publication Title

SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16915
Bio-electrospraying the nematode Caenorhabditis elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Bio-electrospray, the direct jet-based cell handling apporach, is able to handle a wide range of cells. Studies at the genomic, genetic, and the physiological level have shown that, post-treatment, cellular integrity is unperturbed and a high percentage (>70%, compared to control) of cells remain viable. Although, these results are impressive, it may be argued that cell based systems are oversimplistic. This study utilizing a well characterised multicellular model organism, the non-parasitic nematode Caenorhabditis elegans. Nematodes were subjected to bio-electrosprays to demonstrate that bio-electrosprays can be safely applied to nematodes.

Publication Title

Bio-electrospraying the nematode Caenorhabditis elegans: studying whole-genome transcriptional responses and key life cycle parameters.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact