refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 34 results
Sort by

Filters

Technology

Platform

accession-icon GSE16696
Smoking is Associated with Shortened Airway Cilia
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Full Length HuGeneFL Array (hu6800), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Whereas cilia damage and reduced cilia beat frequency have been implicated as causative of reduced mucociliary clearance in smokers, theoretically mucociliary clearance could also be affected by cilia length. Based on models of mucociliary clearance predicting cilia length must exceed the 6 -7 m airway surface fluid depth to generate force in the mucus layer, we hypothesized cilia height may be decreased in airway epithelium of normal smokers compared to nonsmokers.

Publication Title

Smoking is associated with shortened airway cilia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE45346
Estrogen inhibits lipid content in liver exclusively from membrane receptor signaling
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Membrane estrogen receptor (ER) alpha stimulates AMP kinase to suppress SREBP1 processing and lipids in liver

Publication Title

Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19667
Threshold of Biologic Response of the Small Airway Epithelium to Low Levels of Tobacco Smoke
  • organism-icon Homo sapiens
  • sample-icon 121 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Healthy individuals exposed to low levels of cigarette smoke have a decrement in lung function and higher risk for lung disease compared to unexposed individuals. We hypothesized that healthy individuals exposed to low levels of tobacco smoke must have biologic changes in the small airway epithelium compared to healthy unexposed individuals. Methods: Small airway epithelium was obtained by bronchoscopy from 121 individuals; microarrays assessed genome wide gene expression, and urine nicotine and cotinine were used to categorized subjects as nonsmokers, active smokers, and low exposure. The gene expression data was used to determine the threshold and ID50 of urine nicotine and cotinine at which the small airway epithelium showed abnormal responses. Results: There was no threshold of urine nicotine without an abnormal small airway epithelial response, and only a slightly above detectable threshold abnormal response for cotinine. The nicotine ID50 for nicotine was 25 ng/ml and cotinine 104 ng/ml. Conclusions: The small airway epithelium detects and responds to low levels of tobacco smoke with transcriptome modifications. This provides biologic correlates of epidemiologic studies linking low level tobacco smoke exposure to lung health risk, health, identifies genes in the lung cells most sensitive to tobacco smoke and defines thresholds at the lung epithelium responds to inhaled tobacco smoke.

Publication Title

Threshold of biologic responses of the small airway epithelium to low levels of tobacco smoke.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE14317
Gene expression profiling of ATL patients
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Abstract: Adult T-cell leukemia/lymphoma (ATL) is an aggressive and fatal disease. We have examined 18 ATL patient samples using Affymetrix HG-U133A2.0 arrays. Using the BRB array program, we identified genes differentially expressed in leukemia cells compared to normal lymphocytes. Several unique genes were identified that were overexpressed in leukemia cells including TNFSF11, RGS13, MAFb, CSPG2, C/EBPalpha and TCF4. 200 of the most highly overexpressed ATL genes were analyzed by the PathwayStudio 4.0 program. ATL leukemia cells were characterized by an increase in genes linked to "central" genes CDC2/cyclin B1, SYK/LYN, PCNA and BIRC5. Because of its potential therapeutic importance, we focused our studies on the regulation and function of BIRC5, whose expression was increased in 13 of 14 leukemia samples. TCF4 reporter assays and transfection of DN-TCF4 demonstrated that TCF4 regulates BIRC5 gene expression. Functionally, transfection of ATL cells wi BIRC5 shRNA decreased BIRC5 exprression and cell viability 80%. Clinical treatment of ATL patients with Zenapax or bortezomib decreased BIRC5 expression and cell viability. These experiments represent the first direct experimental evidence that BIRC5 plays an important role in ATL cell viability and provides important insight into ATL genesis and potential targeted therapies.

Publication Title

Gene expression profiling of ATL patients: compilation of disease-related genes and evidence for TCF4 involvement in BIRC5 gene expression and cell viability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE185658
Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Balanced immune responses in airways of patients with asthma are crucial to succesful clearance of viral infection and proper asthma control.

Publication Title

Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE110551
Microbiome and Inflammatory Interactions in Obese and Severe Asthmatic Adults
  • organism-icon Homo sapiens
  • sample-icon 147 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to better understand the systemic immunological responses in a clinical cohort of obese and non-obese asthmatics and healthy subjects, we sought to analyze gene expression from whole blood. We collected whole blood samples from 156 donors and performed gene expression analysis of these samples and identified differentially expressed genes (DEGs) in each obese and/or asthma group relative to healthy volunteers.

Publication Title

Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE76630
Stromal-Based Signatures for the Classification of Gastric Cancer
  • organism-icon Mus musculus
  • sample-icon 98 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stromal-Based Signatures for the Classification of Gastric Cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE76628
Stromal-Based Signatures for the Classification of Gastric Cancer [part II]
  • organism-icon Mus musculus
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Increasing success is being achieved in the treatment of malignancies with stromal-targeted therapies, predominantly in anti-angiogenesis and immunotherapy, predominantly checkpoint inhibitors. Despite 15 years of clinical trials with anti-VEGF pathway inhibitors for cancer, we still find ourselves lacking reliable predictive biomarkers to select patients for anti-angiogenesis therapy. For the more recent immunotherapy agents, there are many approaches for patient selection under investigation. Notably, the predictive power of an Ad-VEGF-A164 mouse model to drive a stromal response with similarities to a wound healing response shows relevance for human cancer and was used to generate stromal signatures. We have developed gene signatures for 3 stromal states and leveraged the data from multiple large cohort bioinformatics studies of gastric cancer (TCGA, ACRG) to further understand how these relate to the dominant patient phenotypes identified by previous bioinformatics efforts. We have also designed multiplexed IHC assays that robustly represent the vascular and immune diversity in gastric cancer. Finally, we have used this methodology to arrive at a hypothesis of how angiogenesis and immunotherapy may fit into the experimental approaches for gastric cancer treatments.

Publication Title

Stromal-Based Signatures for the Classification of Gastric Cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE76588
Stromal-Based Signatures for the Classification of Gastric Cancer [part I]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Increasing success is being achieved in the treatment of malignancies with stromal-targeted therapies, predominantly in anti-angiogenesis and immunotherapy, predominantly checkpoint inhibitors. Despite 15 years of clinical trials with anti-VEGF pathway inhibitors for cancer, we still find ourselves lacking reliable predictive biomarkers to select patients for anti-angiogenesis therapy. For the more recent immunotherapy agents, there are many approaches for patient selection under investigation.

Publication Title

Stromal-Based Signatures for the Classification of Gastric Cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE995
Differentiation of acute myeloid leukemia cells
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Full Length HuGeneFL Array (hu6800)

Description

We developed a general approach to small molecule library screening called GE-HTS (Gene Expression-Based High Throughput Screening) in which a gene expression signature is used as a surrogate for cellular states and applied it to the identification of compounds inducing the differentiation of acute myeloid leukemia cells. In screening 1,739 compounds, we identified 8 that reliably induced the differentiation signature, and furthermore yielded functional evidence of bona fide differentiation.

Publication Title

Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact