refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE14801
Expression data from ERG Si treated and Control HUVEC cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

ERG (Ets Related Gene) is an ETS transcription factor that was originally described for its role in a number of human cancers. Our preliminary data demonstrate that ERG exhibits a highly EC restricted pattern of expression in cultured primary cells and several adult tissues including the heart, lung, and brain. In response to inflammatory stimuli, such as TNF-alpha, we observed a marked reduction of ERG expression in EC.

Publication Title

Antiinflammatory effects of the ETS factor ERG in endothelial cells are mediated through transcriptional repression of the interleukin-8 gene.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE18010
Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Polymorphisms in the interleukin-4 receptor chain (IL-4R) have been linked to asthma incidence and severity, but a causal relationship has remained uncertain. In particular, a glutamine to arginine substitution at position 576 (Q576R) of IL-4R has been associated with severe asthma, especially in African Americans. We show that mice carrying the Q576R polymorphism exhibited intense allergen-induced airway inflammation and remodeling. The Q576R polymorphism did not affect proximal signal transducer and activator of transcription (STAT) 6 activation, but synergized with STAT6 in a gene target and tissue-specific manner to mediate heightened expression of a subset of IL-4 and IL-13responsive genes involved in allergic inflammation. Our findings indicate that the Q576R polymorphism directly promotes asthma in carrier populations by selectively augmenting IL-4Rdependent signaling.

Publication Title

Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP112533
Transcriptome analysis of V336Y mutant mitochondrial ribosomal protein in human HEK293 cell line
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Analysis of HEK293 cells lines expressing V336Y mutant mitochondrial ribosomal protein. Overall design: mRNA profiles of wild-type and V336Y mutant HEK293 cell culture samples generated by deep sequencing.

Publication Title

Mutant MRPS5 affects mitoribosomal accuracy and confers stress-related behavioral alterations.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP162552
Human Bone Marrow Assessment by Single Cell RNA Sequencing, Mass Cytometry and Flow Cytometry [bulk]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

Bulk RNA Sequencing of Healthy Bone Marrow Mononuclear Cells Overall design: Using standard operating procedures, mononuclear cells from bone marrow aspirates were isolated using Ficoll density gradient separation and cryopreserved in 90% FBS/ 10% DMSO for storage in liquid nitrogen. RNA was harvested from thawed cell vials of BMMCs using AllPrep kits (QIAGEN). Libraries were prepared using TruSeq Stranded Total RNA Sample Preparation Kit (Illumina) with 1ug of RNA input. Sequencing was performed by paired-end 75 nt on Illumina HiSeq 3000.

Publication Title

Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact