refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon SRP040645
Transcriptome profiling of severe spinal muscular atrophy mouse embryonic stem cell-derived motor neurons
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Proximal spinal muscular atrophy (SMA) is an early onset, autosomal recessive motor neuron disease caused by loss of or mutation in SMN1 (survival motor neuron 1). Despite understanding the genetic basis underlying this disease, it is still not known why motor neurons (MNs) are selectively affected by the loss of the ubiquitously expressed SMN protein. Using a mouse embryonic stem cell (mESC) model for severe SMA, the RNA transcript profiles (transcriptomes) between control and severe SMA (SMN2+/+;mSmn-/-) mESC-derived MNs were compared in this study using massively parallel RNA sequencing (RNA-Seq). The MN differentiation efficiencies between control and severe SMA mESCs were similar. RNA-Seq analysis identified 3094 upregulated and 6964 downregulated transcripts in SMA mESC-derived MNs when compared against control cells. Pathway and network analysis of the differentially expressed RNA transcripts showed that pluripotency and cell proliferation transcripts were significantly increased in SMA MNs while transcripts related to neuronal development and activity were reduced. The differential expression of selected transcripts such as Crabp1, Crabp2 and Nkx2.2 was validated in a second mESC model for SMA as well as in the spinal cords of low copy SMN2 severe SMA mice. Furthermore, the levels of these selected transcripts were restored in high copy SMN2 rescue mouse spinal cords when compared against low copy SMN2 severe SMA mice. These findings suggest that SMN deficiency affects processes critical for normal development and maintenance of MNs. Overall design: RNA profiles were generated from FACS-purified control and SMA mESC-derived motor neurons (n=3/genotype) by deep sequencing using Illumina HighSeq 2500

Publication Title

Transcriptome profiling of spinal muscular atrophy motor neurons derived from mouse embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73424
Colonic gene expression data of TIMP1 knock out colitis mice
  • organism-icon Mus musculus
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Increased levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) have been detected in fibrotic strictures in Crohns disease. In a murine model of chronic inflammation, fibrosis was associated with an increase in TIMP-1 and inhibition of matrix metalloproteinase (MMP)-mediated degradation. We investigated the effect of TIMP-1 deficiency on the colonic gene expression in acute and chronic murine models of colitis, using whole genome gene expression arrays.

Publication Title

Genetic Deletion of Tissue Inhibitor of Metalloproteinase-1/TIMP-1 Alters Inflammation and Attenuates Fibrosis in Dextran Sodium Sulphate-induced Murine Models of Colitis.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact