refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 458 results
Sort by

Filters

Technology

Platform

accession-icon GSE21839
Transcriptome analysis of wild type E. coli (K-12 MG1655) comparing to mutant E. coli strain (ECOM4) under aerobic and anaerobic conditions
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Cytochrome oxydases and quinol monooxygenase were removed from the E. coli genome resulting in oxygen-independent physiology

Publication Title

Deletion of genes encoding cytochrome oxidases and quinol monooxygenase blocks the aerobic-anaerobic shift in Escherichia coli K-12 MG1655.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26591
Genome-scale reconstruction of the PurR regulon reveals its role in the adenine stimulon of Escherichia coli K-12 MG1655
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The PurR regulon in Escherichia coli K-12 MG1655.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26588
Transcriptome analysis of E. coli MG1655
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Expression profiling of wild type and purR deletion strains of E. coli K-12 MG1655 under both M9 minimal media and addition of adenine.

Publication Title

The PurR regulon in Escherichia coli K-12 MG1655.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34631
Transcriptome analysis of E. coli in M9 minimal media supplemented with propylene glycol or glycerol
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

The aim of this study is to investigate the changes of global gene expression in E. coli during a carbon source shift.

Publication Title

Network context and selection in the evolution to enzyme specificity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15500
Analysis of differences in gene expression due to small adaptive mutations in RNA polymerase B' subunit (rpoC)
  • organism-icon Escherichia coli
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Studies of the RNA polymerase-binding molecule ppGpp in bacteria and plants have shown that changes to the kinetics of the RNA polymerase can have dramatic biological effects in the short-term as a stress response. Here we describe the reprogramming of the kinetic parameters of the RNAP through mutations arising during laboratory adaptive evolution of Escherichia coli in minimal media. The mutations cause a 10- to 30-fold decrease in open complex stability at a ribosomal promoter and approximately a 10-fold decrease in transcriptional pausing in the his operon. The kinetic changes coincide with large scale transcriptional changes, including strong downregulation of motility, acid-resistance, fimbria, and curlin genes which are observed in site-directed mutants containing the RNA polymerase mutations as well as the evolved strains harboring the mutations. Site-directed mutants also grow 60% faster than the parent strain and convert the carbon-source 15% to 35% more efficiently to biomass. The results show that long-term adjustment of the kinetic parameters of RNA polymerase through mutation can be important for adaptation to a condition.

Publication Title

RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53123
Expression data from MOLT-4 and CCRF-CEM cells grown in serum free medium, untreated, treated with direct (A-769662) and indirect (AICAR) AMPK activators.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Two human acute lymphoblastic leukemia cell lines (Molt-4 and CCRF-CEM) were treated with direct (A-769662) and indirect (AICAR) AMPK activators. Molt-4 and CCRF-CEM cells were obtained from ATCC (CRL-1582 and CCL-119). Control samples were used for the analysis of metabolic differences between cell lines. Therefore the data was analyzed in combination with, metabolomic data, and the genome-scale reconstruction of human metabolism. For experiments cells were grown in serum-free medium containing DMSO (0.67%) at a cell concentration of 5 x 105 cells/mL.

Publication Title

Prediction of intracellular metabolic states from extracellular metabolomic data.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE58416
Gene expression regulated by transcription factor MiT in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

To understand the role of MiT in Drosophila, we set out to identify critical gene targets by looking at changes in the WT transcriptome induced by either gain or loss of MiT function. Mutant hindgut and malpighian tubules provided loss-of function tissue and nub-Gal4-driven expression of MiT in the wing epithelium was used for gain-of-function. In the wing disc experiment, 543 genes were upregulated by exogenous MiT, and 359 genes were downregulated (>1.4 fold; P value < 0.01). In the larval HG+MT, 897 genes were downregulated and 898 were upregulated (>1.4 fold; P value < 0.01) after MiT. Among these genes, 85 were both upregulated in wing discs and downregulated in mutant HG+MT, and are the common genes that regulated by MiT in both tissues.

Publication Title

Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP162257
Cortisol acting through the glucocorticoid receptor is not responsible for exercise-enhanced growth but does affect the white skeletal muscle transcriptome in zebrafish (Danio rerio)
  • organism-icon Danio rerio
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Forced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the mechanism, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analysed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 versus 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish. In this cluster, genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Since growth was enhanced similarly in both wild-type fish and mutants, these processes may play an important role in exercise-enhanced growth. Overall design: Deep-sequencing transcriptome analysis of white muscle samples derived from wild-type (++) or glucocorticoid receptor (Gr) mutant (--) Danio rerio specimens that were exposed to either a resting (REST) or a swimming (UOPT) regimen: wild-type resting (REST++; n=3), Gr mutant resting (REST--; n=3), wild-type swimming (UOPT++; n=3), Gr mutant swimming (UOPT--; n=3).

Publication Title

Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish (<i>Danio rerio</i>).

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE78227
The maleless gene mitigates global aneuploid effect and evolutionary shift from X to autosomes
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

During sexual dimorphism, the loss of one entire X chromosome in Drosophila males is achieved largely via a broad genome-wide aneuploid effect. Exploring how MSL proteins and two large non coding RNAs (roX1 and roX2) modulate trans-acting aneuploid effect for equality to females, we employ a system biology approach (microarray) to investigate the global aneuploid effect of maleless(mle) mutation by disrupting MSL binding. A large number of the genes (144) that encode a broad spectrum of cellular transport proteins and transcription factors are located in the autosomes of Drosophila melanogaster.

Publication Title

Drosophila maleless gene counteracts X global aneuploid effects in males.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4133
The Genome Wide Distribution of Acetylated Histone H4 Remodelled through Human Primary Myoblast Differentiation
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Genome U133B Array (hgu133b)

Description

The simultaneous genotyping of tens of thousands of SNP using SNP microarrays is a very important tool that is revolutionizing genetics and molecular biology. In this work, we present a new application of this technique by using it to assess chromatin immunoprecipitation (CHIP) as a means to assess the multiple genomic locations bound by a protein complex recognized by an antibody. We illustrate the use of this technique with an analysis of the change in histone H4 acetylation, a marker of open chromatin and transcriptionally active genomic regions, which occur during the differentiation of human myoblasts into myotubes. Our results are validated by the observation of a significant correlation between the histone modifications detected and the expression of the nearby genes, as measured by DNA microarrays.

Publication Title

ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact