refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE15999
Mesenchymal signature of post-pneumonectomy lung regeneration in adult mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The adult human lung has a very limited capacity to regenerate functional alveoli. In contrast, adult mice have a remarkable capacity for neoalveolarization following either lung resection or injury. The molecular basis for this unique capability to regenerate lung tissue in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling used in this species during lung regeneration. Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points). Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days) and analyzed using microarray technology. The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1), as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts, up-regulation of genes involved in T cell development and function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This appears to differ from embryonic alveologenesis. These data suggest that modulation of mesenchymal cell signaling and proliferation may act in concert with immunomodulation to control inflammation during post-pneumonectomy lung regeneration in adult mice.

Publication Title

Global gene expression patterns in the post-pneumonectomy lung of adult mice.

Sample Metadata Fields

Sex, Treatment, Time

View Samples
accession-icon SRP079004
Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. Comprehensive transcriptome analysis was employed to validate the capacity of three prioritized compounds to remodel the ER proteostasis environment, and to assess the prefential activation of ATF6 transcriptional targets relative to targets of the IRE1/XBP1s and PERK arms of the UPR. Overall design: HEK293T-Rex and HEK293-DAX cells were treated for 6 hr with vehicle (DMSO), 1 µM Tg, 10 mM TMP (in HEK293DAX), or 10 µM 132, 147 or 263 in biological triplicate at 37 °C

Publication Title

Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact