refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 506 results
Sort by

Filters

Technology

Platform

accession-icon GSE18488
Yeast expression data from conditions that inhibit sirtuins
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sir2 is an NAD+-dependent histone deacetylase, and is the founding member of a large, phylogentically conserved, family of such deacetylases called the Sirtuins. The budding yeast, Saccharomyces cerevisiae, harbors 4 paralogs of Sir2, known as Hst1, Hst2, Hst3, and Hst4. Reducing the intracellular NAD+ concentration is inhibitory for the Sirtuins, and raising the intracellular nicotinamide (NAM) concentration is inhibitory. Microarray gene expression analysis was used to identify novel classes of yeast genes whose expression is altered when either NAD+ concentration is reduced or NAM is elevated. A subset of genes involved in thiamine biosynthesis was identified as being upregulated when Sir2 or Hst1 was inactivated.

Publication Title

Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25608
Functional and cellular constraints that shaped the PPARg binding landscape in human and mouse macrophages
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PPARG binding landscapes in macrophages suggest a genome-wide contribution of PU.1 to divergent PPARG binding in human and mouse.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE25137
Functional and cellular constraints that shaped the PPARg binding landscape in human and mouse macrophages: human expression
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Genome-wide comparisons of transcription factor binding sites in different species allow for a direct evaluation of the evolutionary constraints that shape transcription factor binding landscapes. To gain insights into the evolution of the PPARg-dependent transcriptional network we obtained binding data for PPARg, RXR and PU.1 in human macrophages and compared the profiles to matching data from mouse macrophages. We found that PPARg binding was highly divergent and only 5% of the PPARg bound regions were occupied in both species. Despite the low conservation of PPARg binding sites, conserved PPARg target genes contribute more than 30% to the functional target genes identified in human macrophages. In addition conserved target genes are strongly enriched for lipid metabolic functions. We detected the lineage-specification factor PU.1 at the majority of human PPARg binding sites. This confirmed the juxtaposed binding configuration found in mouse macrophages and demonstrated the preservation of tissue-specific adjacent PPARg-Pu.1 binding in the absence of individual binding site conservation. Finally, based on this of PPARg and PU.1 binding between human and mouse we suggest a mechanism by which PU.1 facilitates PPARg binding site turnover in macrophages.

Publication Title

PPARG binding landscapes in macrophages suggest a genome-wide contribution of PU.1 to divergent PPARG binding in human and mouse.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE41223
LXR activation induces insulin resistance in primary human adipocytes
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The effects of LXR stimulation by GW3965 treatment on global mRNA and miRNA expression in primary human in vitro differentiated adipocytes was investigated using microarray profiling.

Publication Title

LXR is a negative regulator of glucose uptake in human adipocytes.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE63188
An EphB-Abl signaling pathway important for intestinal tumor initiation and growth
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

EphB receptors regulate the proliferation and positioning of intestinal stem and progenitor cells. In addition, they can act as tumor promoters for adenoma development, but suppress progression to invasive carcinoma. Here we used imatinib to abrogate Abl kinase activity in ApcMin/+ mice and in mice with LGR5+ stem cells genetically targeted for APC. This treatment inhibited the tumor-promoting effects of EphB signaling without attenuating EphB-mediated tumor suppression, demonstrating the role of EphB signaling in intestinal tumor initiation. The investigated treatment regimen extended the lifespan of ApcMin/+ mice, and reduced cell proliferation in cultured slices of adenomas from FAP patients. These findings connect the EphB signaling pathway to the regulation of intestinal adenoma initiation via Abl kinase. Our findings may have clinical implications for pharmacological therapy against adenoma formation and cancer progression in patients predisposed to develop colon cancer.

Publication Title

An EphB-Abl signaling pathway is associated with intestinal tumor initiation and growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69555
Gene expression analyses of miR-99b and miR-330-3p overexpression in Natural killer cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

In order to define the targets of two miRNA overexpressed in NK cells in CFS/ME paitents, miRNA precursors for hsa-miR-99b and hsa-miR-330-3p were transfected in to buffy coat derived Natural Killer cells isolated by negative magnetic selection.

Publication Title

MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME).

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE57695
Osteoclasts Control Re-activation of Dormant Myeloma Cells by Remodeling the Endosteal Niche
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and re-populate the tumor. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and re-activation. In this study we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state which is switched on by engagement with bone lining cells or osteoblasts, and switched off by osteoclasts remodeling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy targeting dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse.

Publication Title

Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107630
Acute treatment with chemical PPARGC1a1 activators in brown fat cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

The peroxisome proliferator-activated receptor-coactivator-11 (PGC-11) regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-11 activation has been suggested to be beneficial for systemic metabolism. Pharmacological PGC-11 activators could be valuable tools in the fight against obesity and metabolic disease. Finding such compounds has been challenging partly because PGC-11 is a transcriptional coactivator with no known ligand-binding activities. Importantly, PGC-11 activation is regulated by several mechanisms but protein stabilization is a limiting step as the protein has a short half-life under unstimulated conditions.

Publication Title

Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38866
Expression Data from siRae1 and siNT infected with VSV or mock infected
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

To test the effect of silencing Rae1 on expression on RNA polymerase II transcripts, host mRNAs were analysed by cDNA microarrays. We hypothesized that if silencing Rae1 expression increases cellular resistance to inhibition of transcription in VSV infected cells, mRNA characteristic of host antiviral response would be increased than compared to cells transfected with control siRNA.

Publication Title

Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE4289
Host transcriptome changes associated with episome loss and selection of keratinocytes containing integrated HPV16
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Integration of high-risk human papillomavirus (HRHPV) into the host genome is a key event in cervical neoplastic progression. Integration is associated with deregulated expression of the viral oncogenes E6 and E7 and acquisition of a selective growth advantage for cells containing integrants. Overexpression of the viral transcriptional regulator E2 from heterologous promoters has an inhibitory effect on transcription from integrated HRHPV. We therefore hypothesised that loss of E2-expressing episomes from cells in which integration had previously occurred would be required for such cells to gain a growth advantage. Using the unique W12 model of cervical squamous carcinogenesis, we show that cells containing integrated HPV16 reproducibly emerged during long-term culture when there had been a rapid fall in episome numbers. During the period of emergence it is possible to isolate single-cell clones containing an intracellular mixture of the integrant being selected and episomes at reduced load. Microarray analysis showed that episome loss was closely associated with endogenous activation of antiviral response genes that are also inducible by the type I interferon (IFN) pathway. Taken together, our results indicate that episome loss, associated with induction of antiviral response genes, is a key event in the spontaneous selection of cervical keratinocytes containing integrated HPV16. We conclude that cervical carcinogenesis requires not only HRHPV integration, but also loss of inhibitory episomes.

Publication Title

Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact