refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 251 results
Sort by

Filters

Technology

Platform

accession-icon SRP189661
A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. [scRNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 62 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

While the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less understood. By dissecting border regions and combining single-cell RNA sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development. BAMs exhibited a mixed ontogeny and subsets displayed distinct self-renewal capacities upon depletion and repopulation. Single-cell and fate-mapping analysis both suggested there is a unique microglial subset residing on the apical surface of the choroid plexus epithelium. Finally, gene network analysis and conditional deletion revealed IRF8 as a master regulator that drives the maturation and diversity of brain macrophages. Our results provide a framework for understanding host-macrophage interactions in the healthy and diseased brain. Overall design: sample of WT choroid plexus, sample of WT dura mater, sample of WT enriched SDM, sample of WT whole brain, sample of 9 months old APP/PS1 mice, sample of 16 months old APP/PS1 mice, sample of 16 months old WT mice, sample of Irf8 KO whole brain, sample of Irf8 KO choroid plexus, sample of Irf8 WT whole brain, sample of Irf8 WT choroid plexus, sample of dura mater with standard protocol and with ActD protocol, sample of choroid plexus with standard protocol and ActD protocol.

Publication Title

A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP078560
Transcriptomic profile of circulating memory T cells can differentiate between latent tuberculosis individuals and healthy controls
  • organism-icon Homo sapiens
  • sample-icon 141 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Tuberculosis (TB) is responsible for the majority of mortality and morbidity associated with infectious diseases worldwide. The characterization of exact molecular components of immune response associated with protection against TB may help design more effective therapeutic interventions. In this study, we aimed to characterize the immune signature of memory T cells associated with latent infection with Mycobacterium tuberculosis. Transcriptomic profiling using RNA sequencing was performed on memory CD4 and CD8 T cells isolated from individuals with latent tuberculosis, as well as from tuberculosis negative healthy controls. Overall, we found specific gene signatures in each cell subset that could successfully discriminate between individuals with latent tuberculosis and healthy controls. Overall design: RNA-sequencing of sorted memory CD4 and CD8 T cells from cryopreserved PBMC of 10 subjects with latent tuberculosis infection and 10 tuberculosis negative healthy controls

Publication Title

Circulating T cell-monocyte complexes are markers of immune perturbations.

Sample Metadata Fields

Disease, Disease stage, Subject

View Samples
accession-icon GSE95805
Overexpression of PIK3CA in head and neck squamous cell carcinoma is associated with poor outcome and activation of the YAP pathway
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Objectives: Phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) is commonly altered in many human tumors, leading to the activation of p110 enzymatic activity that stimulates growth factor-independent cell growth. PIK3CA alterations such as mutation, gene amplification and overexpression are common in head and neck squamous cell carcinoma (HNSCC) and. We aim to explore how these alterations and clinical outcome are associated, as well as the molecular mechanisms involved.

Publication Title

Overexpression of PIK3CA in head and neck squamous cell carcinoma is associated with poor outcome and activation of the YAP pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP009882
mRNA-seq and expression profile of mouse ES OS25 cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

mRNA-seq and expression profile of mouse ES OS25 cells Overall design: Gene expression (mRNA-Seq) in mouse ES cells

Publication Title

Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon E-TABM-344
Transcription profiling by array of M and S molecular forms of Anopheles gambiae at each of three developmental stages
  • organism-icon Anopheles gambiae
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

We examined patterns of gene expression in two independent colonies of both M and S molecular forms of Anopheles gambiae at each of three developmental stages of interest: late larvae, sugar-fed virgin females, and gravid females. For each colony, replicates were derived from independent RNA samples extracted from different cohorts to ensure that trends were reproducible. In addition, each replicate was derived from larvae (adults) drawn from three pans (cages) to minimize the contribution of any individual pan to variation between samples. Data were obtained from a total of five biological replicates per mosquito colony.

Publication Title

Differential gene expression in incipient species of Anopheles gambiae.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP070571
Pathogenicity of genomic duplications is determined by formation of novel chromatin domains (neo-TADs) (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Genome-scale methods have identified subchromosomal structures so-called topologically associated domains (TADs) that subdivide the genome into discrete regulatory units, establish with their target genes. By re-engineering human duplications at the SOX9 locus in mice combined with 4C-seq and Capture Hi-C experiments, we show that genomic duplications can result in the formation of novel chromatin domains (neo-TADs) and that this process determines their molecular pathology. Overall design: RNA-seq of embryonic limb buds for WT and mutant animals carrying structural variations at the Sox9/Kcnj locus.

Publication Title

Formation of new chromatin domains determines pathogenicity of genomic duplications.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP034868
Whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat, at different sequencing depths (RNA-Seq)
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Poly(A) enriched RNA derived from the L5 DRG 7 days following L5-SNT and from naïve L5-DRG tissue was subjected to RNA-seq analysis at different sequencing depths Overall design: 6 biological replicates (3 case – SNT subjected L5-DRG tissue, 3 control – naïve L5-DRG tissue). Each biological replicate was divided B46into 3 technical replicates; each of the technical replicates for a given sample was sequenced to a depth of 17M, 25M or 50M reads. Reads were single stranded and 34bps in length. Multiplexing was used in order to generate the read depths of different sizes. The gene expression values and fold changes in expression between naive and SNT samples were compared to those generated by a microarray experiment carried out on further technical replicates of the same samples, details in the manuscript (submitted - under revision).

Publication Title

A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65663
A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. Upon osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared to euhydrated (EU) controls in terms of drinking and eating behaviour, body weight and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL

Publication Title

A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89524
Identification of differentially expressed miRNAs between SW480 and SW620 spheroid cultures
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE80750
Gene expression profiling of the prostate cancer cell line PC3.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

To study the effect of miR-130a in prostate cancer, PC3 cells overexpressing miR-130a were analyzed for global gene expression.

Publication Title

Epigenetic disruption of miR-130a promotes prostate cancer by targeting SEC23B and DEPDC1.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact