refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 79 results
Sort by

Filters

Technology

Platform

accession-icon GSE60356
Retinoic acid signaling constrains the plasticity of Th1 cells and prevents development of pathogenic Th17 cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Agilent-028005 SurePrint G3 Mouse GE 8x60K Microarray (Probe Name version)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60354
Retinoic acid signaling constrains the plasticity of Th1 cells and prevents development of pathogenic Th17 cells [Affymetrix experiments]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Agilent-028005 SurePrint G3 Mouse GE 8x60K Microarray (Probe Name version)

Description

CD4+ T cells differentiate into phenotypically distinct T-helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune diseases. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARa, sustains stable expression of Th1 lineage specifying genes as well as repressing genes that instruct Th17 cell fate. RA signaling is essential for limiting Th1 cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our studies identify RA-RARa as a key component of the regulatory network governing Th1 cell fate and define a new paradigm for the development of pathogenic Th17 cells. These findings have important implications for autoimmune diseases in which dysregulated Th1-Th17 responses are observed.

Publication Title

Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP125977
Transcriptome analysis of PRMT6 knock-out in NT2/D1 cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Whole transcriptome for PRMT6 knock-out and control NT2/D1 cells with and without ATRA (all-trans retinoic acid) was sequenced. These samples were compared to each other to find differentially regulated genes and PRMT6-dependent transcriptome in pluripotency and differentiating cells. Overall design: Examining of PRMT6-dependent transcriptome in NT2/D1 cells using RNAseq.

Publication Title

Genomic Location of PRMT6-Dependent H3R2 Methylation Is Linked to the Transcriptional Outcome of Associated Genes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE30122
Transcriptome Analysis of Human Diabetic Kidney Disease
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome analysis of human diabetic kidney disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE30566
Transcriptome Analysis of Human Diabetic Kidney Disease (Control Glomeruli vs. Control Tubuli)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples.

Publication Title

Transcriptome analysis of human diabetic kidney disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE30528
Transcriptome Analysis of Human Diabetic Kidney Disease (DKD Glomeruli vs. Control Glomeruli)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples.

Publication Title

Transcriptome analysis of human diabetic kidney disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE30529
Transcriptome Analysis of Human Diabetic Kidney Disease (DKD Tubuli vs. Control Tubuli)
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples.

Publication Title

Transcriptome analysis of human diabetic kidney disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE38870
Expression data of satellite cells through muscle injury time course
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Satellite cells are resident skeletal muscle stem cells responsible for muscle maintenance and repair. In resting muscle, satellite cells are maintained in a quiescent state. Satellite cell activation induces the myogenic commitment factor, MyoD, and cell cycle entry to facilitate transition to a population of proliferating myoblasts that eventually exit the cycle and regenerate muscle tissue. The molecular mechanism involved in the transition of a quiescent satellite cell to a transit-amplifying myoblast is poorly understood.

Publication Title

A role for RNA post-transcriptional regulation in satellite cell activation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP066619
A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation [human cell line RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We report gene expression data for human melanoma cell lines using RNAseq. Overall design: RNAseq was performed on 8 melanoma cell lines and one normal human melanocyte cell line. All done as single replicates, except for two biological replicates of A375.

Publication Title

A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP066621
A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation [zebrafish RNA-Seq]
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We report gene expression data for FACS sorted zebrafish crestin_1kb:EGFP + cells collected at 15 somite stage (SS). Overall design: crestin_1kb:EGFP + embryos were homogenized, filtered, and sorted using FACS into PBS, collecting ~5,500 EGFP (+) cells and 100K EGFP (-) cells with a single sample for each.

Publication Title

A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact