refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 527 results
Sort by

Filters

Technology

Platform

accession-icon GSE51669
Expression data from the stomach of mice treated with dexamethasone.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Glucocorticoids are used for the treatment of inflammatory conditions but they also cause many side-effects.

Publication Title

Glucocorticoids induce gastroparesis in mice through depletion of l-arginine.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE9728
COP9 signalosome (csn) mutant analysis
  • organism-icon Arabidopsis thaliana
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcript profiling analysis of csn3-1, csn4-1 and csn5 (csn5a-2 csn5b) light grown and dark grown mutant seedlings compared to light grown and dark grown wild type using Arabidopsis ATH1 GeneChip array

Publication Title

The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP119402
The tumor suppressor Brat controls neuronal lineages by inhibiting the transcription factors Deadpan and Zelda
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature controlled brat RNAi with transcriptome analysis to identify the immediate brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage. Overall design: Comparison of transcriptomes of Drosophila melanogaster control and brat RNAi larval brain type II neural stem cell lineages.

Publication Title

The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE30694
Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2) on gene expression in bovine endometrium
  • organism-icon Bos taurus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Interferon tau (IFNT), a Type I IFN similar to alpha IFNs (IFNA), is the pregnancy recognition signal, produced by the ruminant conceptus. To elucidate specific effects of bovine IFNT and of other conceptus-derived factors, endometrial gene expression changes during early pregnancy were compared to gene expression changes after intrauterine application of human IFNA2. In study one, endometrial tissue samples were obtained on days (D) 12, 15, and 18 post-mating from nonpregnant or pregnant heifers. In study two, heifers were treated from D14 to D16 of the estrous cycle with an intrauterine device releasing IFNA2 or placebo lipid extrudates or PBS only as controls. Endometrial biopsies were collected after flushing the uterus. All samples from both experiments were analyzed with an Affymetrix Bovine Genome Array. Study one revealed differential gene expression between pregnant and nonpregnant endometria on D15 and D18. In study two, IFNA2 treatment resulted in differential gene expression in the bovine endometrium. Comparison of the datasets from both studies identified genes that were differentially expressed in response to IFNA2 but not in response to pregnancy on D15 or D18. Vice versa, genes were found as differentially expressed during pregnancy but not after IFNA2 treatment. In study three, spatiotemporal alterations in expression of selected genes were determined in uteri from nonpregnant and early pregnant heifers using in situ hybridization. The findings of this study suggest differential effects of bovine IFNT compared to human IFNA2 and that some pregnancy-specific changes in the endometrium are elicited by conceptus-derived factors other than IFNT.

Publication Title

Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE54417
mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mechanistic target of rapamycin mTORC1 is a key regulator of cell metabolism and autophagy. Despite widespread clinical use of mTOR inhibitors, the role of mTORC1 in renal tubular function and kidney homeostasis remains elusive. By utilizing constitutive and inducible deletion of conditional Raptor alleles in renal tubular epithelial cells, we discovered that mTORC1 deficiency caused a marked concentrating defect, loss of tubular cells and slowly progressive renal fibrosis. Transcriptional profiling revealed that mTORC1 maintains renal tubular homeostasis by controlling mitochondrial metabolism and biogenesis as well as transcellular transport processes involved in counter-current multiplication and urine concentration. Although mTORC2 partially compensated the loss of mTORC1, exposure to ischemia and reperfusion injury exaggerated the tubular damage in mTORC1-deficient mice, and caused pronounced apoptosis, diminished proliferation rates and delayed recovery. These findings identify mTORC1 as an essential regulator of tubular energy metabolism and as a crucial component of ischemic stress responses. Pharmacological inhibition of mTORC1 likely affects tubular homeostasis, and may be particularly deleterious if the kidney is exposed to acute injury. Furthermore, the combined inhibition of mTORC1 and mTORC2 may increase the susceptibility to renal damage.

Publication Title

mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59949
Expression data from human dental follicle cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

We analysed the genexpression of dental follicle cells (DFCs) after 3 days osteogenic differentiation with BMP2 after transfection with a DLX3 plasmid (pDLX3) and after transfection with an empty plasmid (pEV)

Publication Title

A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs).

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31628
Gene expression profiles of DFCs and SHED 48 hours after in vitro transfection with a TP53 plasmid, a SP1 plasmid, or an empty vector.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Dental follicle is a loose connective tissue that surrounds the developing tooth. Dental follicle cells (DFCs) have a promising potential for tissue engineering applications including periodontal and bone regeneration. However, little is known about the molecular mechanisms underlying osteogenic differentiation. In a previous study we detected that more than 35 % of genes that are regulated during osteogenic differentiation of DFCs have promoter binding sites for the transcription factors TP53 and SP1. However, the role of these transcription factors in dental stem cells is still unknown. We hypothesize that both factors influence the processes of cell proliferation and differentiation in dental stem cells. Therefore, we transiently transfected DFCs and dental pulp stem cells (SHED; Stem cells from human exfoliated decidiuous teeth) with expression vectors for these transcription factors. After overexpression of SP1 and TP53, SP1 influenced cell proliferation and TP53 osteogenic differentiation in both dental cell types. The effects on cell proliferation and differentiation were less pronounced after siRNA mediated silencing of TP53 and SP1. This indicates that the effects we observed after TP53 and SP1 overexpression are indirect and subject of complex regulation. Interestingly, upregulated biological processes in DFCs after TP53-overexpression resemble the downregulated biological processes in SHED after SP1-overexpression. Here, regulated processes are involved in cell motility, wound healing and programmed cell death. In conclusion, our study demonstrates that SP1 and TP53 influence cell proliferation and differentiation and similar biological processes in both SHED and DFCs.

Publication Title

Transcription factors TP53 and SP1 and the osteogenic differentiation of dental stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20100
Expression data from primary MEF lacking either HDAC1, HDAC2 or both
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Previously published data suggested some redundant functions between HDAC1 and HDAC2 in mouse. To test this hypothesis, we used microarrays to have a genome wide analysis at the transcription level of primary MEFs lacking HDAC1, HDAC2.

Publication Title

Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE20963
Gene expression profiles of dental follicle cells after 7 days of differentiation in vitro with BMP2, IGF2 and dexamethasone
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We analysed gene expression profiles in dental follicle cells after 7 days of osteogenic differentiation with different inducers.

Publication Title

The differentiation and gene expression profile of human dental follicle cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18072
Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We analysed gene expression profiles in dental follicle cells before and after osteogenic differentiation with dexamethasone.

Publication Title

Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact