refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 118 results
Sort by

Filters

Technology

Platform

accession-icon GSE87712
Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits
  • organism-icon Escherichia coli, Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE50621
Expression analyses of inducible c-Fos expressing kerationcytes
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Expression analyses comparing c-Fos expressing keratinocytes vs non-expressing controls.

Publication Title

Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE7030
Phenotypic and molecular characterisation of a novel Bt2 allele in maize
  • organism-icon Zea mays
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

At 35 DAP whole kernels (pericarp + endosperm + embryo) without glumes of green house grown ears of heterozygous (+/bt2-H2328), self-pollinated plants were visually divided into pools of phenotypically normal looking kernels (small indentation, slightly smaller than mutant kernels, genotype +/+ or +/bt2-H2328) and pools of phenotypically mutant kernels (plump, round kernels, slightly larger than normal kernels, genotype bt2-H2328/bt2-H2328). Pools consisted of 4 kernels. 3 different ears were used for a biological duplicate.

Publication Title

Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10347
Gene expression data from Hexose-6-phosphate dehydrogenase knockout mouse muscle at 4 weeks
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Hexose-6-phosphate dehydrogenase (H6PD)is the initial component of a pentose phosphate pathway inside the endoplasmic reticulum (ER) that generates NADPH for ER enzymes. In liver, H6PD is required for the 11-oxoreductase activity of 11ss-hydroxysteroid dehydrogenase type 1 (11ss-HSD1), which converts inactive 11-oxo glucocorticoids to their active 11-hydroxyl counterparts; consequently, H6PD null mice are relatively insensitive to glucocorticoids, exhibiting fasting hypoglycemia, increased insulin sensitivity despite elevated circulating levels of corticosterone, and increased basal and insulin-stimulated glucose uptake in muscles normally enriched in Type II (fast) fibers which have increased glycogen content. They also display a progressive vacuolar myopathy evident after 4 weeks of age.

Publication Title

Deletion of hexose-6-phosphate dehydrogenase activates the unfolded protein response pathway and induces skeletal myopathy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21784
Genome-wide expression analysis during aging in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Aging has been shown to be under genetic control in C. elegans. We performed Affymetrix micorarray-based transcriptional profililng of wild type C. elegans strain Bristol N2 during aging to detect temporal changes in gene expression.

Publication Title

A decline in p38 MAPK signaling underlies immunosenescence in Caenorhabditis elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53760
Identification of Sox3 targets in mouse neural progenitor cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Sox3 has been shown to be expressed within neural progenitors of the developing mouse central nervous system. However, identification of Sox3 targets within neural progenitors has remained elusive.

Publication Title

Dbx1 is a direct target of SOX3 in the spinal cord.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE10557
Actions of anti-Mullerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition.
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The oocytes found within the primordial follicles of mammalian ovaries remain quiescent for months to years until they receive the appropriate signals to undergo the primordial to primary follicle transition and initiate folliculogenesis. The molecular mechanisms and extracellular signaling factors that regulate this process remain to be fully elucidated. The current study investigates the mechanisms utilized by anti-Mllerian hormone (AMH; i.e. Mllerian inhibitory substance) to inhibit the primordial to primary follicle transition. Ovaries from 4-day-old rats were placed into organ culture and incubated in the absence or presence of AMH, either alone or in combination with known stimulators of follicle transition, including basic fibroblast growth factor (bFGF), kit ligand (KITL), or keratinocyte growth factor (KGF). Following 10 days of culture, the ovaries were sectioned, stained, and morphologically evaluated to determine the percentage of primordial versus developing follicles. As previously demonstrated, AMH treatment decreased primordial to primary follicle transition. Interestingly, AMH inhibited the stimulatory actions of KITL, bFGF, and KGF. Therefore, AMH can inhibit the basal and stimulated development of primordial follicles. To investigate the mechanism of AMH actions, the influence AMH has on the ovarian transcriptome was analyzed. AMH treatment when compared with controls was found to alter the expression of 707 genes. The overall effect of AMH exposure is to decrease the expression of stimulatory factors, increase the expression of inhibitory factors, and regulate cellular pathways (e.g. transforming growth factor beta signaling pathway) that result in the inhibition of primordial follicle development. Analysis of the regulatory factors and cellular pathways altered by AMH provides a better understanding of the molecular control of primordial follicle development.

Publication Title

Actions of anti-Mullerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69688
Gene expression data from murine myeloid leukemia genomes induced by Sleeping Beauty transposon mutagenesis
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptome analysis of mRNA samples from a cohort of mice with histopathologically diagnosed Undifferentiated Myeloid Leukemia.

Publication Title

Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP058917
Transcriptome sequencing of murine myeloid leukemia genome
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Mus musculus (house mouse) Myeloid Leukemia RNA-Seq

Publication Title

Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP073118
Role of transcriptional coregulator GRIP1 in control of macrophage polarization and metabolic homeostasis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Diet-induced obesity is characterized by macrophage (MF) infiltration and low-grade chronic inflammation in white adipose tissue (WAT) leading to insulin resistance. WAT MF are highly heterogeneous in their origin, patterns of gene expression and activities: unlike infiltrating monocyte-derived MF that promote inflammation and metabolic dysfunction, tissue-resident WAT MF originally described as ‘M2’ are phenotypically anti-inflammatory and counteract obesity and insulin resistance. Despite the critical role of the balance between these MF populations in metabolic homeostasis, the molecular mechanisms and key players that establish the resident MF transcription program are poorly understood. We recently reported that glucocorticoid receptor (GR)-interacting protein (GRIP)1 - a nuclear receptor coactivator - cooperates with GR to repress transcription of inflammatory genes. Here, using mice conditionally lacking GRIP1 in MF (cKO), we show that GRIP1 promotes MF polarization in response to IL4 (M2(IL4)) via a nuclear receptor-independent pathway by serving as a coactivator for Kruppel-like factor (KLF)4 – a critical driver of tissue MF differentiation. Interestingly, in vivo, GRIP1 cKO mice challenged with high-fat diet develop massive MF infiltration and chronic inflammation in WAT and liver, fatty livers, hyperglycemia, hyperinsulinemia and glucose intolerance consistent with metabolic syndrome phenotype. Together, our findings identify GRIP1 as a critical regulator of immunometabolism, which relies on distinct transcriptional mechanisms to coordinate the balance between MF populations in vivo thereby protecting mice from obesity-induced metabolic disease. Overall design: 1. Examination of IL4 induced transcriptome in in vitro differentiated primary bone marrow-derived macrophages. 2. Examination of macrophage transcriptome in macrophages isolated from the white adipose tissue of the WT and GRIP1(cKO) conditional KO animals

Publication Title

The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact