refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 250 results
Sort by

Filters

Technology

Platform

accession-icon GSE10245
Gene expression differences between adenocarcinoma and squamous cell carcinoma in human NSCLC
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Non-small cell lung cancer (NSCLC) can be classified into the major subtypes adenocarcinoma (AC) and squamous cell carcinoma (SCC) subtypes. Although explicit molecular, histological and clinical characteristics have been reported for both subtypes, no specific therapy exists so far. However, the characterization of suitable molecular targets holds great promises to develop novel therapies in NSCLC. In the present study, global gene expression profiling of 58 human high grade NSCLC specimens revealed large transcriptomic differences between AC and SCC subtypes: More than 1.700 genes were found to be differentially expressed.

Publication Title

Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE3585
Dilated Cardiomyopathy and Non Failing Biopsies
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Dilated cardiomyopathy (DCM) is a common cause of heart failure and a leading cause of cardiac transplantation in western countries. The robust predictive expression profile of cardiomyopathic and NF hearts as well as the functional classification can help to identify promising candidates for DCM and may improve the early diagnosis of cardiomyopathy.

Publication Title

Identification of a common gene expression signature in dilated cardiomyopathy across independent microarray studies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30866
Gene expression of polyoma middle T antigen induced mammary tumors
  • organism-icon Mus musculus
  • sample-icon 180 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated cross-species transcriptional network analysis of metastatic susceptibility.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30864
Gene expression of polyoma middle T antigen induced mammary tumors [AKXD x PyMT]
  • organism-icon Mus musculus
  • sample-icon 112 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Mouse genetic crosses were established between the PyMT model of metastatic breast cancer and AKXD strain. Tumors were harvested from the animals for gene expression analysis to identify genes and network modules associated with progression to distant metastatic disease.

Publication Title

Integrated cross-species transcriptional network analysis of metastatic susceptibility.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30865
Gene expression of polyoma middle T antigen induced mammary tumors [NZB x PyMT]
  • organism-icon Mus musculus
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mouse genetic crosses were established between the PyMT model of metastatic breast cancer and NZB strain. Tumors were harvested from the animals for gene expression analysis to identify genes and network modules associated with progression to distant metastatic disease.

Publication Title

Integrated cross-species transcriptional network analysis of metastatic susceptibility.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE90149
Mesenchymal stromal cell transcriptome study
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptomes of mesenchymal stromal cells from bone marrow (bmMSC) were compared to MSC from term placenta (pMSC).

Publication Title

Expression of Desmoglein 2, Desmocollin 3 and Plakophilin 2 in Placenta and Bone Marrow-Derived Mesenchymal Stromal Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP140739
Phenotyping spermatogenic defects by single-cell expression profiling
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000, Illumina HiSeq 2500, Illumina MiSeq

Description

Using Drop-seq, we generated high-throughput single-cell expression data from wild-type and four mutant models with male infertility phenotype. Our study demonstrates the applicability of single-cell RNA-sequencing in study of male gonadal dysfunction and provides cell atlas resource for testis. Overall design: Drop-seq was performed on FACS sorted germ cell populations, wild-type whole testes and mutant whole testes. Different experimental batches for wild-type and mutant strains were generated.

Publication Title

Unified single-cell analysis of testis gene regulation and pathology in five mouse strains.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE5116
Genomic Pathways of 17-beta-Estradiol Induced Malignant Cell Transformation in Human Breast Epithelial Cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The estrogen-dependence of breast cancer has long been recognized, however, the role of 17-estradiol (E2) in cancer initiation was not known until we demonstrated that it induces complete neoplastic transformation of the human breast epithelial cells MCF-10F. E2-treatment of MCF-10F cells progressively induced high colony efficiency and loss of ductulogenesis in early transformed (trMCF) cells and invasiveness in Matrigel invasion chambers. The cells that

Publication Title

Epithelial to mesenchymal transition in human breast epithelial cells transformed by 17beta-estradiol.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34839
Pten loss and RAS/MAPK activation cooperate to promote EMT and prostate cancer metastasis initiated from stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PTEN loss or PI3K/AKT signaling pathway activation correlates with human prostate cancer progression and metastasis. However, in preclinical murine models, deletion of Pten alone fails to mimic the significant metastatic burden that frequently accompanies the end stage of human disease. To identify additional pathway alterations that cooperate with PTEN loss in prostate cancer progression, we surveyed human prostate cancer tissue microarrays and found that the RAS/MAPK pathway is significantly elevated both in primary and metastatic lesions. In an attempt to model this event, we crossed conditional activatable K-rasG12D/WT mice with the prostate conditional Pten deletion model we previously generated. Although RAS activation alone cannot initiate prostate cancer development, it significantly accelerated progression caused by PTEN loss, accompanied by epithelial-to-mesenchymal transition (EMT) and macrometastasis with 100% penitence. A novel stem/progenitor subpopulation with mesenchymal characteristics was isolated from the compound mutant prostates, which was highly metastatic upon orthotopic transplantation. Importantly, inhibition of RAS/MAPK signaling by PD325901, a MEK inhibitor, significantly reduced the metastatic progression initiated from transplanted stem/progenitor cells. Collectively, these data indicate that activation of RAS/MAPK signaling serves as a potentiating second hit to alteration of the PTEN/PI3K/AKT axis and co-targeting both pathways is highly effective in preventing the development of metastatic prostate cancers.

Publication Title

Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31113
Molecular Organization of Drosophila Neuroendocrine Cells by DIMMED: Global Profiling of Pan-Neuronal DIMMED Expression Effects
  • organism-icon Drosophila melanogaster
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

To amass candidate DIMM targets in addition to Phm (Park et al., 2008a), we used genome-wide microarray profiling by over-expressing DIMM throughout the embryonic nervous system. We compared profiles from experimental (elav>dimm) and control (elav-GAL4) embryos at 22-26 hr and 28-32 hr after egg laying (AEL). The design was intended to identify transcripts consistently up-regulated shortly after the induction of DIMM; in so doing, we could circumvent the lethality that ensues in late embryonic, and/ or by early larval stages, due to pan-neuronal DIMM expression.

Publication Title

Molecular organization of Drosophila neuroendocrine cells by Dimmed.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact