refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 22 results
Sort by

Filters

Technology

Platform

accession-icon GSE97246
Porcine oocytes maturation in vitro
  • organism-icon Sus scrofa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.1 ST Array (porgene11st)

Description

The proper mammalian oocytes maturation is recognized as reaching MII stage and accumulation of mRNA and proteins in cell cytoplasm following fertilization. The proper course of folliculogenesis and oogenesis is orchestrated with morphogenesis significantly influencing further zygote formation and embryos growth. This study was aimed to determinate new transcriptomic markers of porcine oocytes morphogenesis associated with cell maturation capacity.

Publication Title

"Cell Migration" Is the Ontology Group Differentially Expressed in Porcine Oocytes Before and After In Vitro Maturation: A Microarray Approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP038919
Transcriptome wide identification of Dicer binding in human and C. elegans reveals a variety of substrates (HEK PAR-CLIP)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Dicer is a deeply conserved endoribonuclease with key functions in small RNA biogenesis. Here we employed PAR-CLIP/iPAR-CLIP to identify direct Dicer binding sites in the transcriptomes of human cells and human. We found hundreds of novel miRNAs and non-canonical Dicer substrates with high sensitivity. Small RNA production depended on structure of the binding site and is globally biased towards the 5'' arm of hairpins. Unexpectedly, in both species Dicer bound numerous hairpins inside mRNAs without observable small RNA production. Our data revealed ~100 mRNAs of protein coding genes to be targeted in both human and worm. These mRNAs significantly overlapped with the RNAi pathway. We also, unexpectedly, found that mitochondrial transcripts are Dicer targets in both species. We demonstrate functional consequences of Dicer binding by perturbation analysis. Taken together,we provide the first genome-wide catalog of direct Dicer targets. Our results suggest widespread function outside of miRNA biogenesis. Overall design: PAR-CLIP basically as described previously (Hafner et al. 2010).

Publication Title

A variety of dicer substrates in human and C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP050055
A variety of Dicer substrates in human and C. elegans (HEK RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The endoribonuclease Dicer is known for its central role in the biogenesis of eukaryotic small RNAs/microRNAs. Despite its importance, Dicer target transcripts have not been directly mapped. Here, we apply biochemical methods to human cells and C. elegans and identify thousands of Dicer binding sites. We find known and hundreds of novel miRNAs with high sensitivity and specificity. We also report structural RNAs, promoter RNAs, and mitochondrial transcripts as Dicer targets. Interestingly, most Dicer binding sites reside on mRNAs/lncRNAs and are not significantly processed into small RNAs. These passive sites typically harbor small, Dicer-bound hairpins within intact transcripts and generally stabilize target expression. We show that passive sites can sequester Dicer and reduce microRNA expression. mRNAs with passive sites were in human and worm significantly associated with processing-body/granule function. Together, we provide the first transcriptome-wide map of Dicer targets and suggest conserved binding modes and functions outside the miRNA pathway. Overall design: Regulatory impact of Dicer binding was assessed by knock down experiments in human HEK293 cells. Drosha knockdown and mock transfections were used as controls. Knockdown was performed with two independent siRNAs each. In total 5 samples.

Publication Title

A variety of dicer substrates in human and C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP038921
Transcriptome wide identification of Dicer binding in human and C. elegans reveals a variety of substrates (HEK RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Dicer is a deeply conserved endoribonuclease with key functions in small RNA biogenesis. Here we employed PAR-CLIP/iPAR-CLIP to identify direct Dicer binding sites in the transcriptomes of human cells and human. We found hundreds of novel miRNAs and non-canonical Dicer substrates with high sensitivity. Small RNA production depended on structure of the binding site and is globally biased towards the 5'' arm of hairpins. Unexpectedly, in both species Dicer bound numerous hairpins inside mRNAs without observable small RNA production. Our data revealed ~100 mRNAs of protein coding genes to be targeted in both human and worm. These mRNAs significantly overlapped with the RNAi pathway. We also, unexpectedly, found that mitochondrial transcripts are Dicer targets in both species. We demonstrate functional consequences of Dicer binding by perturbation analysis. Taken together,we provide the first genome-wide catalog of direct Dicer targets. Our results suggest widespread function outside of miRNA biogenesis. Overall design: Regulatory impact of Dicer binding was assessed by knock down experiments in human HEK293 cells. Drosha knockdown and mock transfections were used as controls. In total 3 samples.

Publication Title

A variety of dicer substrates in human and C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP038925
Transcriptome wide identification of Dicer binding in human and C. elegans reveals a variety of substrates (small RNA AGO-IP)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Dicer is a deeply conserved endoribonuclease with key functions in small RNA biogenesis. Here we employed PAR-CLIP/iPAR-CLIP to identify direct Dicer binding sites in the transcriptomes of human cells and human. We found hundreds of novel miRNAs and non-canonical Dicer substrates with high sensitivity. Small RNA production depended on structure of the binding site and is globally biased towards the 5'' arm of hairpins. Unexpectedly, in both species Dicer bound numerous hairpins inside mRNAs without observable small RNA production. Our data revealed ~100 mRNAs of protein coding genes to be targeted in both human and worm. These mRNAs significantly overlapped with the RNAi pathway. We also, unexpectedly, found that mitochondrial transcripts are Dicer targets in both species. We demonstrate functional consequences of Dicer binding by perturbation analysis. Taken together,we provide the first genome-wide catalog of direct Dicer targets. Our results suggest widespread function outside of miRNA biogenesis. Overall design: Argonaute loaded small RNAs were extracted from FLAG:AGO2 and FLAG:AGO3 expressing HEK293 cells. Small RNA was purified and length selected (see supplementary methods).

Publication Title

A variety of dicer substrates in human and C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP105064
High-resolution gene expression datasets of ontogenetic zones in the root apical meristem
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In plants, apical meristems allow continuous growth along the body axis. Within the root apical meristem (RAM), a group of slowly dividing quiescent center (QC) cells is thought to limit stem cell activity to directly neighboring cells (Cowels, 1956; van den Berg et al., 1997), thus endowing them with unique properties, distinct from displaced daughters. This binary identity of the stem cells stands in apparent contradiction with the more gradual changes in cell division potential (Bennett and Scheres, 2010) and differentiation (Yamaguchi et al., 2008; 2010; Furuta et al, 2014; Geldner, 2013; Masucci et al., 1996; Dolan and Costa, 2001) that occur as cells move further away from the QC. To address this paradox and to infer molecular organization of the root meristem, we used a whole-genome approach to determine dominant transcriptional patterns along root ontogeny zones. We found that the prevalent patterns are expressed in two opposing gradients. One is characterized by genes associated with development, the other enriched in differentiation genes. We confirmed these transcript gradients, and demonstrate that these translate to gradients in protein accumulation and gradual changes in cellular properties. We also show that gradients are genetically controlled through multiple pathways. Based on these findings, we propose that cells in the Arabidopsis root meristem gradually transition from 'stemness' towards differentiation. Overall design: This study contains high-resolution datasets from cell populations from the enitre root meristem and xylem-specific cell populations. Using fluorescence activated cell sorting, three cell populations were isolated based on their GFP expression intensity. Two-Three replicates were used per sample

Publication Title

Framework for gradual progression of cell ontogeny in the <i>Arabidopsis</i> root meristem.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE17009
Onconase Responsive Genes in Human Mesothelioma Cells: Implications for an RNA Damaging Therapeutic Agent
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action.

Publication Title

Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP115897
A molecular roadmap of the aorta-gonad-mesonephros region reveals BMPER as a novel regulator of HSC maturation [AGM]
  • organism-icon Mus musculus
  • sample-icon 75 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In the developing embryo, haematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA-sequencing over these spatio-temporal transitions in the AGM region, and supportive OP9 cell line. Overall design: RNA-sequencing profiles of the aorta-gonad-mesonephros region from E9.5 embryos and E10.5 embryos sub-dissected into dorsal (AoD), ventral (AoV) and urogenital ridges (UGR) and pooled from between 15 and 34 embryos in three separate experiments.

Publication Title

A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP115898
A molecular roadmap of the aorta-gonad-mesonephros region reveals BMPER as a novel regulator of HSC maturation [OP9]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In the developing embryo, haematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA-sequencing over these spatio-temporal transitions in the AGM region, and supportive OP9 cell line. Overall design: RNA-sequencing profiles of OP9 cells grown in flat, submersed culture or reaggregate and cultured at the liquid-gas interface were compared.

Publication Title

A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE59560
Molecular profiling of three tumor subtypes in Ptch medulloblastomas
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

we discovered that medulloblastomas that form in Ptch mice are composed of three different sibtypes depending on the cell of origin and tumor progression.

Publication Title

Epigenetic states of cells of origin and tumor evolution drive tumor-initiating cell phenotype and tumor heterogeneity.

Sample Metadata Fields

Sex, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact