refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 108 results
Sort by

Filters

Technology

Platform

accession-icon SRP152507
Aging alters the epigenetic asymmetry of HSC division [scRNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 293 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase Cdc42. Here we demonstrate, using a comprehensive set of paired daughter cell analyses that include single cell 3D-confocal imaging, single cell transplants, single cell RNA-seq as well as single cell ATAC-seq, that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells. Overall design: Sorted single cells were cultured with and without treatment in the presence of cytokines until first cell division (40-44hrs). The daughter cells were manually separated, washed with PBS and collected for RNA sequencing.

Publication Title

Aging alters the epigenetic asymmetry of HSC division.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE49089
NRASG12V oncogene mediates self-renewal in acute myelogenous leukemia
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049821
Leukemia stem cell-enriched population expresses self-renewal gene-expression signature [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific function of these pathways in AML is unclear. To elucidate the downstream functions of activated NRAS in AML, we employed a murine model of AML harboring Mll-AF9 and NRASG12V. We found that NRASG12V enforced leukemia self-renewal gene expression signatures and was required to maintain an MLL-AF9 and MYB-dependent gene expression program. In a multiplexed analysis of RAS-dependent signaling intermediates, the leukemia stem cell compartment was preferentially sensitive to RAS withdrawal. Use of RAS-pathway inhibitors showed that NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell-specific therapies. Overall design: Primary leukemia cells harvested from spleens were sorted into immunophenotypic subpopulations (Mac-1High, Mac-1LowKit–Sca-1–, Mac-1LowKit+Sca-1–, and Mac-1LowKit+Sca-1+). RNA was extracted from this subpopulations of cells and submitted for RNA sequencing.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49038
NRASG12V mediates leukemia self renewal [Microarray]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific function of these pathways in AML is unclear. To elucidate the downstream functions of activated NRAS in AML, we employed a murine model of AML harboring Mll-AF9 and NRASG12V. We found that NRASG12V enforced leukemia self-renewal gene expression signatures and was required to maintain an MLL-AF9 and MYB-dependent gene expression program. In a multiplexed analysis of RAS-dependent signaling intermediates, the leukemia stem cell compartment was preferentially sensitive to RAS withdrawal. Use of RAS-pathway inhibitors showed that NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell-specific therapies.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32381
Cell-type specific control of enhancer activity by H3K9 trimethylation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cell-type-specific control of enhancer activity by H3K9 trimethylation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE142170
Promoter nucleosome positioning in dendritic cells (DCs) and fibroblasts
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Role of cell-type specific nucleosome positioning in inducible activation of mammalian promoters.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP058190
Next Generation Sequencing (NGS) comparison of two MVT1 cells subpopulations, CD24- cells and CD24+ cells
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The goal of this study is to compare the transcriptome of the 2 MVT1 subpopulations in order to identify new genes and pathways that stands beyond the CD24+ aggressive phenotype Overall design: mRNA profiles of CD24- and CD24+ cells were generated by deep sequencing, in triplicate, using Illumina HiSeq 2500

Publication Title

Deep sequencing of mRNA in CD24(-) and CD24(+) mammary carcinoma Mvt1 cell line.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32255
JmjD2d-dependence of LPS-induced genes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In dendritic cells, expression of the H3K9me3 demethylase JmjD2d is upregulated by LPS stimulation. To identify genes whose induction by LPS depends on JmjD2d activity, we performed a microarray analysis of wild-type and JmjD2d-knockdown dendritic cells, before and after stimulation with LPS.

Publication Title

Cell-type-specific control of enhancer activity by H3K9 trimethylation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE142076
Expression data from fibroblasts with knock-down of Brg1 and Brm
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to asses gene expression in 3T3 fibroblasts, after knock-down of Brg1 and Brm using stable shRNA interference. Cells were treated with 5ng/ml mouse TNF-alpha to stimulate inducible gene activation.

Publication Title

Role of cell-type specific nucleosome positioning in inducible activation of mammalian promoters.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP073118
Role of transcriptional coregulator GRIP1 in control of macrophage polarization and metabolic homeostasis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Diet-induced obesity is characterized by macrophage (MF) infiltration and low-grade chronic inflammation in white adipose tissue (WAT) leading to insulin resistance. WAT MF are highly heterogeneous in their origin, patterns of gene expression and activities: unlike infiltrating monocyte-derived MF that promote inflammation and metabolic dysfunction, tissue-resident WAT MF originally described as ‘M2’ are phenotypically anti-inflammatory and counteract obesity and insulin resistance. Despite the critical role of the balance between these MF populations in metabolic homeostasis, the molecular mechanisms and key players that establish the resident MF transcription program are poorly understood. We recently reported that glucocorticoid receptor (GR)-interacting protein (GRIP)1 - a nuclear receptor coactivator - cooperates with GR to repress transcription of inflammatory genes. Here, using mice conditionally lacking GRIP1 in MF (cKO), we show that GRIP1 promotes MF polarization in response to IL4 (M2(IL4)) via a nuclear receptor-independent pathway by serving as a coactivator for Kruppel-like factor (KLF)4 – a critical driver of tissue MF differentiation. Interestingly, in vivo, GRIP1 cKO mice challenged with high-fat diet develop massive MF infiltration and chronic inflammation in WAT and liver, fatty livers, hyperglycemia, hyperinsulinemia and glucose intolerance consistent with metabolic syndrome phenotype. Together, our findings identify GRIP1 as a critical regulator of immunometabolism, which relies on distinct transcriptional mechanisms to coordinate the balance between MF populations in vivo thereby protecting mice from obesity-induced metabolic disease. Overall design: 1. Examination of IL4 induced transcriptome in in vitro differentiated primary bone marrow-derived macrophages. 2. Examination of macrophage transcriptome in macrophages isolated from the white adipose tissue of the WT and GRIP1(cKO) conditional KO animals

Publication Title

The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact